
Ethernity Chain

Smart Contract Audit Report

NFT MarketPlace

April 26, 2021

Introduction 3
About Ethernity Chain 3
About ImmuneBytes 3

Audit Process & Methodology 4

Audit Details 4

Documentation Details 4

Audit Goals 5

Security Level References 5
High severity issues 6
Medium severity issues 6
Low severity issues 10

Recommendations 12

Automated Test Results 13

Concluding Remarks 14

Disclaimer 14

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

2

Introduction

1. About Ethernity Chain
Ethernity is a Decentralized Application (DAPP) Platform that allows artists to create and
auction artwork inspired and backed by celebrities for charity.
The concept behind Ethernity is mutually beneficial for all actors involved:

1. Public Figure: by making it easier to create, store, back, and sell the artworks.
2. Charity: by getting 100% of the first sale proceeds (minus exchange fees). And the

auction format maximizes the artwork value (increasing the charity’s benefits) without the
need of a promoter, leveraging the emotions that a bidding war involves.

3. Collector: by providing them with an easy, democratized platform to bid on these pieces
of authentic digital art where they can thereafter take bids and auction their acquired
artwork.

With ERN tokens collectors can acquire Ethernity's exclusive authenticated NFTs as
payment method and also yield farming rewards. Part of the sales proceeds go to
charity.

Visit https://ethernity.io/ to know more.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain
space. The team has hands-on experience in conducting smart contract audits,
penetration testing, and security consulting. ImmuneBytes’s security auditors have
worked on various A-league projects and have a great understanding of DeFi projects
like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 15+ blockchain projects by providing security services
on different frameworks. ImmuneBytes team helps start-up with a detailed analysis of the
system ensuring security and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

3

https://blogs.cornell.edu/info2040/2015/10/15/auction-psychology-emotions-behind-bidding/
https://ethernity.io/
http://immunebytes.com/

Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the
code design patterns in which we reviewed the smart contract architecture to ensure it is
structured and safe use of third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find
any potential issues like Signature Replay Attacks, Unchecked External Calls, External Contract
Referencing, Variable Shadowing, Race conditions, Transaction-ordering dependence,
timestamp dependence, DoS attacks, and others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the
functions work as intended. In Automated Testing, we tested the Smart Contract with our
in-house developed tools to identify vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been

followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code,

line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs

and vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: Ethernity
● Languages: Solidity(Smart contract), Javascript(Unit Testing)
● Github commit hash for audit: 49d0433b94b38d9efad301a90709ecdf544b5755

Documentation Details
No documentation was provided by the Ethernity team for the purpose of conducting the audit.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

4

https://github.com/extrawatts/nft-marketplace

Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and
working according to its specifications. The audit activities can be grouped into the following
three categories:

1. Security: Identifying security-related issues within each contract and within the system of
contracts.

2. Sound Architecture: Evaluation of the architecture of this system through the lens of
established smart contract best practices and general software best practices.

3. Code Correctness and Quality: A full review of the contract source code. The primary
areas of focus include:

a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References
Every issue in this report was assigned a severity level from the following:

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be

better fixed at some point in the future.

Issues High Medium Low

Open 1 7 5

Closed - - -

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

5

High severity issues

1. Multiplication is being performed on the result of Division
Line no - 208
Explanation:
The buyByErn function in the Collections.sol contract performs multiplication on the
result of a Division.

Integer Divisions in Solidity might truncate. Moreover, performing division before
multiplication might lead to loss of precision.

The following functions involve division before multiplication in the mentioned lines:
● buyByErn at 208

Recommendation:
Solidity doesn’t encourage arithmetic operations that involve division before
multiplication. Therefore the above-mentioned function should be checked once and
redesigned if they do not lead to expected results.

Medium severity issues

1. Contract State Variables are being updated after External Calls.
Line no - 213-218, 256-257
Explanation:
The Collections contract includes quite a few functions that update some of the very
imperative state variables of the contract after the external calls are being made.

An external call within a function technically shifts the control flow of the contract to
another contract for a particular period of time. Therefore, as per the Solidity Guidelines,
any modification of the state variables in the base contract must be performed before
executing the external call.
Updating state variables after an external call might lead to a potential re-entrancy
scenario.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

6

The following function in the contract update the state variables after making an external
call:

● buyByErn at Line 216 and 218.
● buyByStones at Line 257

Recommendation:
Modification of any State Variables must be performed before making an external call.

2. Return Value of an External Call is Not used Effectively
Line no - 192,256, 289-315,
Explanation:
The external calls made in the above-mentioned lines do return a boolean value that
indicates whether or not the external call made was successful.
These boolean return values can be used in the function as a check to ensure that the
further execution of the function is only allowed if the external is successfully made.

However, the Collections contract never uses these return values throughout the
contract.

Recommendation:
Effective use of all the return values from external calls must be ensured within the
contract.

3. Violation of Check_Effects_Interaction Pattern
Line no - 167, 220, 259, 152, 122
Explanation:
As per the Check_Effects_Interaction Pattern in Solidity, external calls should be made
at the very end of the function and event emission, as well as any state variable
modification, must be done before the external call is made.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

7

However, the following functions in the Collections contract emit events after the external
call has been made at the line number mentioned above:

● addCard
● buyByErn
● buyByStones
● cancelSale
● cardTransfer

Recommendation:
Check Effects Interaction Pattern must be followed while implementing external calls in a
function

4. Loops are extremely costly
Line no: 136, 182
Description:
The for loops, at the above-mentioned lines, in the contract includes state variables like
.length of a non-memory array, in the condition of the for loops.
As a result, these state variables consume a lot more extra gas for every iteration of the
for loop.
The following functions include such loops at the above-mentioned lines:

● cardTransferBatch function
● addCardBatch

Recommendation:
It's quite effective to use a local variable instead of a state variable like .length in a loop.
For instance,
uint256 local_variable = ids.length;
for (uint24 i = 0; i <local_variable; i++) {

addCard(sellers[i], ids[i], erns[i], stones[i], discounts[i]);
}

5. transferFrom function should include “require” statement instead of IF-Else
Statement
Line no: 320-322
Explanation
The transferFrom function includes an if statement at the very beginning of the
function to check whether or not the msg.value sent while calling this function, is greater
than ZERO.
Most importantly, the function body is only executed if this IF statement holds true.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

8

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html#:~:text=To%20implement%20the%20Check%20Effects,vulnerability%2C%20we%20can%20act%20accordingly.

In order to check for such strict validations in a function, require statements are more
preferable and effective solidity. While it helps in gas optimizations it also enhances the
readability of the code.

Recommendation:
Use require statement instead of IF statement in the above-mentioned function line.
For instance,
require(msg.value > 0, “Error MSG: msg.value should be more than ZERO”);

6. addShares function does not include Zero Address Validation
Line no: 60
Explanation:
The addShares function initializes some of the most imperative state variables in the
Collections.sol contract and assigns their respective share amount.

However, during the automated testing of the contract, it was found that the function
doesn’t implement any Zero Address Validation Check to ensure that no zero address is
passed while calling this function.

Recommendation:
Since the addFunction initializes imperative addresses and assigns share amount to
those addresses, it is quite crucial to implement zero address checks and ensure that
only valid addresses are updated while calling this function.

7. State Variables are being updated after External Calls. Violation of
Check-Effects-Interaction Pattern
Line no - 26-29
Explanation:
The NFTFactory contract includes a function that updates a state variable after making
an external call.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

9

Moreover, as per the Check_Effects_Interaction Pattern in Solidity, external calls should
be made at the very end of the function and event emission, as well as any state
variable modification or event emission, must be done before the external call is made.
However, the following function in the Collections contract updates a state variable and
emits events after the external call has been made at the line number mentioned above:

● createCollection function at Line 27-29

Recommendation:
Modification of any State Variables must be performed before making an external call.
Check Effects Interaction Pattern must be followed while implementing external calls in a
function

Low severity issues

1. External Visibility should be preferred
Explanation:
Those functions that are never called throughout the contract should be marked as
external visibility instead of public visibility.
This will effectively result in Gas Optimization as well.

Therefore, the following function must be marked as external within the contract:
● addShares
● addCardBatch
● transferFrom

Recommendation:
External Visibility should be preferred for the above-mentioned functions.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

10

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html#:~:text=To%20implement%20the%20Check%20Effects,vulnerability%2C%20we%20can%20act%20accordingly.

2. Comparison to boolean Constant
Line no: 146
Description:
Boolean constants can directly be used in conditional statements or require statements.
Therefore, it's not considered a better practice to explicitly use TRUE or FALSE in the
require statements.

Recommendation:
The equality to boolean constants must be removed from the above-mentioned line.

3. Functions with similar names should be avoided
Line no - 223
Description:
The Collections.sol contract includes two with exactly similar names.

Since every function has different behavior, it is considered a better practice to avoid
similar names for 2 different functions to eliminate any dilemma and enhance the
readability of the code.

Mentioned below are the function(s) with similar names but different behavior and
arguments:

● transferFrom - Collections.sol contract #Line223
● transferFrom - ERC1155.sol contract #Line148

Recommended:
It is recommended to avoid using a similar name for different functions.

4. 11 Order of layout
Description:

1. As per the Solidity Style Guide, the order of elements and statements should be
according to the following layout:

2. Pragma statements
3. Import statements
4. Interfaces

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

11

5. Libraries
6. Contracts

Inside each contract, library or interface, use the following order:
1. Type declarations
2. State variables
3. Events
4. Functions

The following documentation links can be used as a reference to understand the correct
order: - https://solidity.readthedocs.io/en/v0.8.0/style-guide.html#order-of-layout
https://solidity.readthedocs.io/en/v0.8.0/style-guide.html#order-of-functions

5. External Visibility should be preferred
Explanation:
Those functions that are never called throughout the contract should be marked as
external visibility instead of public visibility.
This will effectively result in Gas Optimization as well.
Therefore, the following function must be marked as external within the contract:

● createCollection

Recommendation:
External Visibility should be preferred for the above-mentioned functions.

Recommendations
1. Coding Style Issues

Code readability of a Smart Contract is largely influenced by the Coding Style issues and
in some specific scenarios may lead to bugs in the future.
Therefore, it is highly recommended to fix the issues like naming convention, indentation,
and code layout issues in a smart contract.

2. NatSpec Annotations must be included
Description:
The smart contracts do not include the NatSpec annotations adequately.

Recommendation:
Cover by NatSpec all Contract methods.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

12

https://solidity.readthedocs.io/en/v0.8.0/style-guide.html#order-of-layout
https://solidity.readthedocs.io/en/v0.8.0/style-guide.html#order-of-functions

Automated Test Results

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

13

Concluding Remarks
While conducting the audits of Ethernity NFT smart contracts, it was observed that the contracts
contain High, Medium, and Low severity issues, along with several areas of recommendations.

Our auditors suggest that High, Medium, Low severity issues should be resolved by Ethernity
developers. Resolving the areas of recommendations are up to the team’s discretion. The
recommendations given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart
contract. Securing smart contracts is a multistep process, therefore running a bug bounty
program as a complement to this audit is strongly recommended.

Our team does not endorse the Ethernity platform or its product neither this audit is investment
advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes Pvt Ltd.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

14

