
Ethernity

Satoshi Staking

Smart Contract Audit
Final Report

May 10, 2022

Introduction 3
About Ethernity 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level Reference 5
High Severity Issues 6
Medium Severity Issues 7
Low Severity Issues 9

Recommendation / Informational 11

Unit Tests 14

Test Coverage 16

Automated Audit Result 16
Maian 16
Mythril 16
Slither 17

Concluding Remarks 18

Disclaimer 18

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

2

Introduction

1. About Ethernity
Ethernity is a Decentralized Application (DAPP) Platform that allows artists to create and auction
artwork inspired and backed by celebrities for charity.
The concept behind Ethernity is mutually beneficial for all actors involved:

1. Public Figure: by making it easier to create, store, back, and sell the artworks.
2. Charity: by getting 100% of the first sale proceeds (minus exchange fees). And the auction

format maximizes the artwork value (increasing the charity’s benefits) without the need of a
promoter, leveraging the emotions that a bidding war involves.

3. Collector: by providing them with an easy, democratized platform to bid on these pieces of
authentic digital art where they can thereafter take bids and auction their acquired artwork.

With ERN tokens collectors can acquire Ethernity's exclusive authenticated NFTs as a payment
method and also yield farming rewards. Part of the sales proceeds goes to charity.

Visit https://ethernity.io/ to know more about it.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provides professional services in the blockchain space. The team
has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and have a
great understanding of DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, and dydx.

The team has been able to secure 105+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-ups with a detailed analysis of the system ensuring security
and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The Ethernity team has provided the following doc for the purpose of audit:

1. https://github.com/ethernitychain/satoshi-staking/tree/dev#readme
2. https://ethernity.cloud/whitepaper/ETHERNITY_whitepaper.pdf

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

3

https://blogs.cornell.edu/info2040/2015/10/15/auction-psychology-emotions-behind-bidding/
https://ethernity.io/
http://immunebytes.com/
https://github.com/ethernitychain/satoshi-staking/tree/dev#readme
https://ethernity.cloud/whitepaper/ETHERNITY_whitepaper.pdf

Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any potential
issues like Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable
Shadowing, Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and
others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs and

vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: Ethernity
● Contracts Name: SatoshiStaking.sol
● Languages: Solidity(Smart contract), Typescript (Unit Testing)
● Github commits for initial audit: 39b9e2ce3435e61d970ca9aea0ab3de3737b9d45
● Github commits for final audit: 4789eb66aa4a3585fab12a59d00ad9eea01d95b5
● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,

Slither, SmartCheck

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

4

Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart

contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level Reference
Every issue in this report were assigned a severity level from the following:

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some

point in the future.

Issues High Medium Low

Open - - -

Closed 1 3 3

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

5

High Severity Issues

1. Secret information should not be placed on-chain
Line no: - 57

Description:
The current contract includes a state variable, i.e., magicData.

As per the inline documentation found in the contract, this state variable is supposed to be secret data
that shall be used for preventing direct NFT Transfers.

However, the state variable is marked as PUBLIC in the current contract design.

Most importantly, it must be kept in mind that every state of a contract is basically publicly visible, even
if a state variable is marked as private. Therefore, it's not considered a secure practice to store any
sensitive data on-chain.

Recommendation:
Sensitive or secret information must not be put on-chain since it's always publicly visible.

Note:
Although the magicData bytes state variable is now made private, it doesn’t ensure that data is not
visible to users of the protocol. If this is supposed to be very sensitive data that perform imperative
functions, it should be kept off-chain as on-chain state variables are accessible to users even if they are
marked as private. Read more here

Acknowledged (May 10th, 2022).
Note by team:
The critical vulnerability is not a vulnerability at all, works just as intended. It is just a 2FA, preventing
users to do tx by mistake, without 2FA code.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

6

https://docs.soliditylang.org/en/v0.8.11/security-considerations.html#private-information-and-randomness
https://docs.soliditylang.org/en/v0.8.11/security-considerations.html#private-information-and-randomness

Medium Severity Issues

1. Promised rewards can be manipulated within the lifetime of an NFT, thus leading to no claimable
rewards at all
Line no: 293-304

Description:
As per the current architecture of the contract, the promisedRewards of a specific collection address is
updated right at the time of the staking in the stakeSingleNFT() function. Additionally, this promised
rewards amount is derived from the amount of time left as well as the amount of the per-day reward for
that collection.

The promisedRewards of a collection is an imperative state since it plays a major role whenever a
user tries to claim their rewards through the claimRewards() function. (Line 215 at claimRewards
function)

However, the contract also includes an emergencyConfig() function that places enormous power in
the hands of the admin as it allows the admin to increase or decrease the promised rewards value for
any collection at any given time.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

7

Moreover, during the review, it was found that the function doesn’t include any input validations which
technically allows the admin to set the promised rewards for a collection, directly to zero. This shall lead
to a very unwanted scenario where the users will be unable to claim any rewards at all.

Recommendation:
The contract design for the above-mentioned functions, specifically the emergencyConfig() function,
must be modified adequately.
If the above-mentioned scenario is not intentional, then the emergencyConfig function could be
modified to execute in a way that reduces the chances of any inadequate manipulation of the promised
rewards for any given collection.

For instance:
a. The admin could only be able to update promised rewards after or before a specific point during

the lifetime of an NFT.
b. The function could be designed to protect the promised rewards to be completely zero and

avoid the scenario of zero claimable rewards for users.

Amended (May 10th, 2022): The issue was fixed by the Ethernity team and is no longer present in
commit 4789eb66aa4a3585fab12a59d00ad9eea01d95b5.

2. Equality of array lengths is not validated before function execution
Line no: 189-194

Description:
The stakeBatchNFT() function allows users to stake a batch of nft by passing an array of the collection
addresses and ids.
However, during the review, it was found that the length of arrays being passed as arguments isn’t
validated to be equal before the actual function execution.

For functions that include more than one array argument must ensure that arrays with similar lengths
have been passed as it might lead to an error while iterating over these arrays in the for loop of the
function.

Recommendation:
A require statement must be included to ensure that arrays with valid lengths are passed to the
function.

Amended (May 10th, 2022): The issue was fixed by the Ethernity team and is no longer present in
commit 4789eb66aa4a3585fab12a59d00ad9eea01d95b5.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

8

3. Multiplication is being performed on the result of Division
Line no - 113 to 117

Description:
During the code review of the SatoshiContract contract, it was found that the getNFTInformation()
function in the contract is performing multiplication on the result of a Division, within its body.

Integer Divisions in Solidity might truncate. Moreover, performing division before multiplication might
lead to a loss of precision.

Recommendation:
Solidity doesn’t encourage arithmetic operations that involve division before multiplication. Therefore
the above-mentioned function should be tested once again for all the corner cases and redesigned if
they do not lead to the expected results.

Amended (May 10th, 2022): The issue was fixed by the Ethernity team and is no longer present in
commit 4789eb66aa4a3585fab12a59d00ad9eea01d95b5.

Low Severity Issues

1. Violation of Check_Effects_Interaction Pattern in the Withdraw function

Description:
The SatoshiStaking contract includes a few functions that update some of the very imperative state
variables of the contract after the external calls are being made.

An external call within a function technically shifts the control flow of the contract to another contract for
a particular period of time. Therefore, as per the Solidity Guidelines, any modification of the state
variables in the base contract must be performed before executing the external call.

The following functions in the contract update the state variables after making an external call at the
lines mentioned below:

● fundCollection() at Line 271
● unstake() at Line 243-245

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

9

Recommendation:
Check Effects Interaction Pattern must be followed while implementing external calls in a function.

Amended (May 10th, 2022): The issue was fixed by the Ethernity team and is no longer present in
commit 4789eb66aa4a3585fab12a59d00ad9eea01d95b5.

2. Absence of Zero Address Validation

Description:
The constructor of the contract updates the imperative admin address of the contract.
However, during the automated testing of the contract, it was found that no Zero Address Validation is
implemented on the function to ensure that only valid addresses are passed to it.

Recommendation:
Zero Address validations should be implemented.

Amended (May 10th, 2022): The issue was fixed by the Ethernity team and is no longer present in
commit 4789eb66aa4a3585fab12a59d00ad9eea01d95b5.

3. Unwanted state variables could be removed
Line no: 59, 60

Description:
The contract currently includes a few state variables that indicate no significant use throughout the
contract execution.

Moreover, it appears that these variables might have been implemented for testing purposes but were
never removed. This increases unnecessary gas usage in functions as well.

Recommendation:
Unwanted state variables or functions should be removed from the contract to optimize gas and
enhance performance.

Amended (May 10th, 2022): The issue was fixed by the Ethernity team and is no longer present in
commit 4789eb66aa4a3585fab12a59d00ad9eea01d95b5.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

10

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html#:~:text=To%20implement%20the%20Check%20Effects,vulnerability%2C%20we%20can%20act%20accordingly.

Recommendation / Informational
1. Exactly similar error messages were found

Line no: 135, 136

Description:
The addCollection() function in the contract, includes 2 crucial require statements at the
above-mentioned lines that check whether or not the given address of the _collection is a contract and
to ensure that the reward token address is a contract address.

However, for both of these require statements, the exact same error messages have been used which
might lead to an ambiguous situation where the specific source of error will be harder to find.

Moreover, having similar error messages for two different require statements also affects the code
readability.

Recommendation:
Error messages should be unique to each require statement and should be stated clearly.

Amended (May 10th, 2022): The issue was fixed by the Ethernity team and is no longer present in
commit 4789eb66aa4a3585fab12a59d00ad9eea01d95b5.

2. Inadequate Test cases found

Description:
The test cases attached with the contract don’t seem to be adequate enough because

a. The current set of test cases doesn’t cover the entire contract and every function
b. The test cases provided currently fail in particular instances specifically during the calculation of

claimable rewards.

Recommendation:
Test cases must be improved and modified to cover all function and imperative corner cases.

Amended (May 10th, 2022): The issue was fixed by the Ethernity team and is no longer present in
commit 4789eb66aa4a3585fab12a59d00ad9eea01d95b5.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

11

3. NatSpec Annotations must be included

Description:
The smart contracts do not include the NatSpec annotations adequately.

Recommendation:
Cover by NatSpec all Contract methods.

Amended (May 10th, 2022): The issue was fixed by the Ethernity team and is no longer present in
commit 4789eb66aa4a3585fab12a59d00ad9eea01d95b5.

4. Coding Style Issues in the Contract

Description:
Code readability of a Smart Contract is largely influenced by the Coding Style issues and in some
specific scenarios may lead to bugs in the future.

During the automated testing, it was found that the Satoshi Staking contract had quite a few code style
issues.

Recommendation:
Therefore, it is recommended to fix the issues like naming convention, indentation, and code layout
issues in a smart contract.

Amended (May 10th, 2022): The issue was fixed by the Ethernity team and is no longer present in
commit 4789eb66aa4a3585fab12a59d00ad9eea01d95b5.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

12

5. Commented codes must be wiped-out before deployment

Description:
The contract includes quite a few commented codes within the contract body.

This badly affects the readability of the code.

Recommendation:
If these instances of code are not required in the current version of the contract, then the commented
codes must be removed before deployment.

Amended (May 10th, 2022): The issue was fixed by the Ethernity team and is no longer present in
commit 4789eb66aa4a3585fab12a59d00ad9eea01d95b5.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

13

Unit Tests

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

14

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

15

Test Coverage

Automated Audit Result

Maian

Mythril

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

16

Slither

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

17

Concluding Remarks
While conducting the audits of the Ethernity smart contracts, it was observed that the contracts contain High,
Medium, and Low severity issues.

Our auditors suggest that High, Medium, and Low severity issues should be resolved by the developers. The
recommendations given will improve the operations of the smart contract.

Note: Ethernity team has Acknowledged/fixed the issues based on the auditor’s recommendation. The
Ethernity does not have any issues present in the contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the Ethernity platform or its product nor this audit is investment advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

18

