
SMART CONTRACT AUDIT
FINAL REPORT

A p r i l 2 , 2 0 2 2

T
A
B
L
E

O
F

C
O
N
T
E
N
T
S

Introduction
 About Ethernity

 About ImmuneBytes

Documentation Details
Audit Process & Methodology
Audit Details
Audit Goals
Security Level Reference
Contract Name: Ethernity
 High Severity Issues

 Medium severity issues

 Low severity issues

 Recommendations/Informational

Functional Tests (Goerli testnet)
Automated Audit Result
Concluding Remarks
Disclaimer

2
2

2

2
3
3
4
4
5
5

5

6

8

11
12

20

20

TOC

1

2

Introduction
1. About Ethernity

Ethernity is a Decentralized Application (DAPP) Platform that allows artists to create and
auction artwork inspired and backed by celebrities for charity.
The concept behind Ethernity is mutually beneficial for all actors involved:

With ERN tokens collectors can acquire Ethernity's exclusive authenticated NFTs as a
payment method and also yield farming rewards. Part of the sales proceeds goes to charity.

Visit https://ethernity.io/ to know more about it.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain space.
The team has hands-on experience in conducting smart contract audits, penetration testing,
and security consulting. ImmuneBytes’s security auditors have worked on various A-league
projects and have a great understanding of DeFi projects like AAVE, Compound, 0x Protocol,
Uniswap, dydx.

The team has been able to secure 125+ blockchain projects by providing security services on
different frameworks. ImmuneBytes team helps start-ups with a detailed analysis of the
system ensuring security and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Public Figure: by making it easier to create, store, back, and sell the artworks.

Charity: by getting 100% of the first sale proceeds (minus exchange fees). And the auction
format maximizes the artwork value (increasing the charity’s benefits) without the need of
a promoter, leveraging the emotions that a bidding war involves.

Collector: by providing them with an easy, democratized platform to bid on these pieces
of authentic digital art where they can thereafter take bids and auction their acquired
artwork.

1.

2.

3.

1. https://ethernity.cloud/whitepaper/ETHERNITY_whitepaper.pdf

The Ethernity team has provided the following doc for the purpose of audit:

Documentation Details

3

ImmuneBytes team has performed thorough testing of the project starting with analyzing the code
design patterns in which we reviewed the smart contract architecture to ensure it is structured and
safe use of third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any
potential issues like Signature Replay Attacks, Unchecked External Calls, External Contract
Referencing, Variable Shadowing, Race conditions, Transaction-ordering dependence, timestamp
dependence, DoS attacks, and others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions
work as intended. In Automated Testing, we tested the Smart Contract with our in-house developed
tools to identify vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -

Testing the functionality of the Smart Contract to determine proper logic has been followed
throughout.

Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.

Deploying the code on testnet using multiple clients to run live tests.

Analyzing failure preparations to check how the Smart Contract performs in case of bugs and
vulnerabilities.

Checking whether all the libraries used in the code are on the latest version.

Analyzing the security of the on-chain data.

1.

2.

3.

4.

5.

6.

Audit Process & Methodology

Audit Details
Project Name: Ethernity

Token Name: MysteryDrop.sol, EnumerableSet.sol

GitHub Address: https://github.com/extrawatts/ethernity-mystery-drop

Commit Hash for initial audit: f5ddf8355240cd79efb0a5b56d694fb6ae3a9e98

Commit Hash for final audit: 7690d8b0ac45a69e444def141249d3c44df78026

Languages: Solidity(Smart contract), Typescript (Unit Testing)

Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,
Slither, SmartCheck, echinda

4

Security: Identifying security-related issues within each contract and within the system of
contracts.

Sound Architecture: Evaluation of the architecture of this system through the lens of
established smart contract best practices and general software best practices.

Code Correctness and Quality: A full review of the contract source code. The primary areas of
focus include

1.

2.

3.

Correctness
Readability
Sections of code with high complexity
Quantity and quality of test coverage

a.
b.
c.
d.

The focus of the audit was to verify that the smart contract system is secure, resilient, and working
according to its specifications. The audit activities can be grouped into the following three
categories:

Audit Goals

Security Level Reference
Every issue in this report were assigned a severity level from the following:

Admin/Owner Privileges can be misused either intentionally or unintentionally.
High severity issues will bring problems and should be fixed.
Medium severity issues could potentially bring problems and should eventually be fixed.
Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Issues

Open

Closed

High

-

1

Medium

-

2

Low

-

3

5

Missing Authentication
Contract: MysteryDrop.sol and ThirdAlternative.sol

Description:
Some methods are missing proper authority check

function set(address[] calldata _collections, uint256[] calldata
numberofIds) external

function tierSet(uint16[] memory _tiers, uint256[] memory _prices)
external

function deleteToken(uint16 _tier,uint256 _collectionIndex,uint256
_tokenIndex) public

157(MysteryDrop)

40(ThirdAlternative)

29(ThirdAlternative)

Recommendation:
Add modifiers to check caller authority

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

1.

High Severity Issues

Contract Name: Ethernity

1.

Medium Severity Issues

Missing Reentrancy Guard
Contract: MysteryDrop.sol

Description:
The method transfers tokens from user to self after executing the buy which mints the token
for the user before fetching the amount. After minting the ERC1155 contracts executes a
`_afterTokenTransfer` method which can be overridden to create a reentrancy.

Code/Function

 function buyMysteryBox(address _user, Tiers _tier) external isStarted {
 require(_user == msg.sender,"Not user!");
 uint256 _ernAmount = buy(_user, _tier);
 ern.transferFrom(_user, address(this), _ernAmount);

 }

Line

204

6

Recommendation:
Create or Import a nonRentrancy guard from OpenZeppelin and apply it to the method.

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

Hardcoded Address
Contract: MysteryDrop.sol

Description:
The address of the Oracle has been hardcoded, which needs to change for different networks.

2.

Code/Function

address ernOracleAddr = 0x0a87e12689374A4EF49729582B474a1013cceBf8;

Line

40

Recommendation:
Set the value for `ernOracleAddr` in the constructor so that it can be set on deployment
whenever deploying to new network.

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

Low severity issues
1. Unused Imports

Contract: MysteryDrop.sol

Description:
The following import was used in the contract MysteryDrop but is not used at all.

Code/Function

import "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";

Line

6

Recommendation:
We should remove the unnecessary imports to reduce contract size and hence deployment
costs.

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

7

2. Unused Mapping
Contract: MysteryDrop.sol

Description:
The contract defines a mapping called tierTokens but it is not being used in the code.

Code/Function

mapping(Tiers => mapping(address => uint256[])) public tierTokens;

Line

45

Recommendation:
We should remove the used variable declarations to reduce contract size and hence
deployment costs.

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

3. Misleading variable name
Contract: MysteryDrop.sol

Description:
The mapping is called `tiers` but it maps tiers to tier prices.

Code/Function

mapping(Tiers => uint256) public tiers;

Line

44

Recommendation:
We can call the variable `tierPrices` for readability and understanding purposes.

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

8

Recommendations/Informational
1. Typecasting on every call

Contract: MysteryDrop.sol

Description:
Whenever we make a call to `getPrice` there is always a type casting of `ernOracleAddr` as
`AggregatorV3Interface` which costs gas.

Code/Function

AggregatorV3Interface priceFeed = AggregatorV3Interface(ernOracleAddr);

Line

216

Recommendation:
Since `ernOracleAddr` is not being used as an address in the contract, we can initialize it as
`AggregatorV3Interface` itself so that we can skip the typecasting in `getPrice` and save some
gas on every call.

Also, we can refactor the constructor on similar lines, i.e.
from `constructor(address _ern)` to `constructor(IERC20 _ern)`

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

2. Commented Code
Contract: MysteryDrop.sol

Description:
The contract contains instances of code that has been commented and contribute nothing
to the logic.

Code/Function

// return 1;

// uint256 count;
// count++;

Line

216

130,153

Recommendation:
Remove commented code.

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

9

3. Refactoring buyMysteryBox
Contract: MysteryDrop.sol

Description:
The method takes user as parameter then ensures that user is msg.sender, so by that logic
only msg.sender can call buyMysteryBox for themselves.

Code/Function

function buyMysteryBox(address _user, Tiers _tier) external isStarted {
 require(_user == msg.sender,"Not user!");
 uint256 _ernAmount = buy(_user, _tier);
 ern.transferFrom(_user, address(this), _ernAmount);
 }

Line

204

Code/Function

Recommendation:

 function buyMysteryBox(Tiers _tier) external isStarted {
 uint256 _ernAmount = buy(msg.sender, _tier);
 ern.transferFrom(msg.sender, address(this), _ernAmount);
 }

We can skip getting the user value as a parameter itself and hence also also skip the require
check for the same and use msg.sender directly.

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

4. Similar code between two methods
Contract: MysteryDrop.sol

Description:
The methods `setCollectionsBatch` and `setCollections` share similar code.

Recommendation:
We recommend making an internal method and make a call to it from both methods to avoid
writing repeated code

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

10

5. Incorrect naming convention
Contract: MysteryDrop.sol

Description:
The method `buy` is an internal function but appears to be a public or external function.

Recommendation:
The internal function names should be preceded by an underscore, so the method `buy` can
be renamed as `_buy` hence following the naming conventions of solidity.

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

6. Missing netspec comments

Recommendation:
We recommend adding netspec comments for each method and variables for better
readability and understanding of code.

Amended (April 02, 2022): The issue has been fixed by the Ethernity team and is no longer
present in the commit: 7690d8b0ac45a69e444def141249d3c44df78026

11

Functional Tests (Goerli testnet)
GameItems: 0x9522496Ed5887FF5fA82c6fD3bE3e0976de4D0b6
GameItems: 0x1CBf065E75C7f81cfa28B082A09B18744fe64e43
GameItems: 0x3d2AAA6C0ebD73EA2e8f694b777CC150d610Dda0
MockERC20: 0x8eab9046c03FbFF69f6274325dF65bEda2A98f62
MysteryDrop: 0x96C63fdf59703dc5c4f56567271eA530010332d9

0x7c9a986f90f7882f7df1a7b078b18e57f562582ecc4b4e1704b
6e5df811159d9

0x045235b8dde4c1eb0d0068e701de4bd22f11e922be1a1e664e
b27fb87a443ed5

0x90dc2332eb2eecda03978be05703938d6b52a636a4dbfb5
4b9995212865d4a42

0x53366c3a16d7b19c2b880259e78331416cee041f11d4fe24bf013
90a2e989bbd

0xec5ee3ea6a99c75021b8432306faf506b377f56b2cbcc3652
140ea41e684845f

0xda936278cdc5f7d2cb94145acbf9710d29fc1f15435b019b04e
d8777496f2fff

0x827ea6107e77039981cd3c66ccce000da10e7ca906b342923
76e1b2ebd5a7104

0xe254b42e3bb8ab8de09ab669002408519fa1e4cb8a6e398
a381aa819216422d7

0xa3d10b72103bbe5e3eb5741861524c859818e439e66cc695e
ed5fc509ec0080b

0x0d300ee029b49040ed93777bb32b0d584c94fbe63cc009d
a990ea71857f0599c

0x0480e43e01956384aca287fde3621a2629b97b1efa8ec21dc1
ace8b0cf7695aa

0xe0b1e2b13e2ea475d1c8b3d1fba7eb8dc9caea3266f9b716c9
abc7ee1efebc1e

0xc22b99248c7f84be521bd6a2935d62fec936ea46b66a17538
bcaa8235b92e982

0xd94ac48789150b361db3a0af8b9ccd02fbd8a9b13374da961
38060bc15bfb2d2

0x8c7e5c7827de7e055bd17ed13475c29beb75b5e53b723124a
871e7de8781e460

tierSet

setCollection
(1 tier, 2 tier, 3 tier)

setStart

buyMysteryBox

withdrawFundsPartially

withdrawAllFunds

buyCreditMysteryBox

resetTierDeck

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

12

Slither1.

Automated Tools Result

13

14

Code Coverage2.

15

16

Automated testing3.

17

Maian
MysteryDrop bytecode

4.

18

Mythx 5.

19

Echidna Test:6.

While conducting the audits of the Ethernity smart contract, it was observed that the contracts
contain High, Medium and Low severity issues.

Our auditors suggest that High, Medium, and Low severity issues should be resolved by the
developers. The recommendations given will improve the operations of the smart contract.
Notes:

Concluding Remarks

ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart
contract. Securing smart contracts is a multistep process, therefore running a bug bounty program
as a complement to this audit is strongly recommended.

Our team does not endorse the Ethernity platform or its product nor this audit is investment advice.
Notes:

Disclaimer

Please make sure contracts deployed on the mainnet are the ones audited.

Check for the code refactor by the team on critical issues.

The Ethernity team has fixed the issues based on the auditor’s recommendation.

