
GoodDollar

CompoundStakingV2

Smart Contract Audit Report

May 30, 2022



Introduction 3
About GoodDollar 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level Reference 5

CompoundStakingV2.sol 6
High Severity Issues 6
Medium Severity Issues 6
Low Severity Issues 7
Recommendation / Informational 9

CompoundStakingV2.sol 11
High Severity Issues 11
Medium Severity Issues 11
Low Severity Issues 11
Recommendation / Informational 12

Call Graph 13

Automated Audit Result 16

Concluding Remarks 18

Disclaimer 18

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

2



Introduction

1. About GoodDollar
GoodDollar is a 100% non-profit foundation looking to secure financial freedom for everyone in the
world by launching a digital coin built on the blockchain and based on the principles of universal basic
income (UBI). GoodDollar: Changing the Balance, For Good.

About Contract:
GoodDollar project is launching publicly. Its mechanism allows people & organizations to lock funds into
an interest-bearing decentralized protocol, currently compound.finance, and donate its created interest
towards the Global Basic Income cause. Anyone who proves they are not a bot can claim Global Basic
Income.

Visit https://www.gooddollar.org/ to know more about it.

2. About ImmuneBytes
ImmuneBytes is a security start-up that provides professional services in the blockchain space. The
team has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and understand
DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, and dydx.

The team has been able to secure 175+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-ups with a detailed analysis of the system, ensuring
security and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The GoodDollar team has provided the following doc for the purpose of audit:

1. GoodDollar High Level Overview.pdf

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

3

https://www.gooddollar.org/
http://immunebytes.com/


Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project, starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract to find potential issues like
Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable Shadowing,
Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors, including -
1. Structural analysis of the smart contract is checked and verified.
2. An extensive automated testing of all the contracts under scope is conducted.
3. Line-by-line Manual Code review is conducted to evaluate, analyze and identify the potential security

risks in the contract.
4. Evaluation of the contract's intended behavior and the documentation shared is an imperative step to

verify the contract behaves as expected.
5. For complex and heavy contracts, adequate integration testing is conducted to ensure that contracts

perform in an acceptable manner while interacting with each other.
6. Storage layout verifications in the upgradeable contract are a must.
7. An important step in the audit procedure is highlighting and recommending better gas optimization

techniques in the contract.

Audit Details
● Project Name: GoodDollar
● Contracts Name: CompoundStakingV2.sol, SimpleStakingV2
● Languages: Solidity(Smart contract), Typescript (Unit Testing)
● Github commits for the audit: 7ee04d23fb8ad3468a041e3f907d9310fb5ffa1d
● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,

Slither, SmartCheck

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

4



Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart

contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level Reference
Every issue in this report were assigned a severity level from the following:

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some

point in the future.

Issues High Medium Low

Open - - 5

Closed - 1 -

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

5



CompoundStakingV2.sol

High Severity Issues

No issues were found.

Medium Severity Issues

1. Multiplication is being performed on the result of Division

Explanation:
During the automated testing of the GoodCompoundStakingV2 contract, it was found that 2 functions
in the contract are performing multiplication on the result of a Division.

Integer Divisions in Solidity might truncate. Moreover, this performing division before multiplication
might lead to a loss of precision.

The following functions involve division before multiplication in the mentioned lines:
● iTokenWorthInToken at 278-280
● tokenWorthIniToken at 297-299

Recommendation:
Solidity doesn’t encourage arithmetic operations that involve division before multiplication. Therefore,
the above-mentioned function should be checked once and redesigned if they do not lead to the
expected results.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

6



Note by the auditor:
The abovementioned multiplication and division issue was primarily found during the
automated contract testing via Slither. The reason behind documenting this issue was specific
to point out the fact that multiplication being performed on the result of a division is not a
recommended approach in Solidity since there is a possibility that integer division might
truncate or leads to some precision loss.

However, in the case of the GoodCompoundStakingV2 contract, it was found that the
chances of precision loss have been eradicated since it includes the use of mantissa, an
unsigned integer, to perform calculations at an adequate level of precision.

Moreover, regarding the division at Line 280, 298, the division shall only fail if the decimal
difference between token and iToken is unusually large, which is not the case here. Therefore,
it can be safely stated that no locked funds shall be affected due to any precision loss while
withdrawing the funds back in the original token.

Low Severity Issues

1. Absence of input validation in the setcollectInterestGasCostParams() function
Line no -307-314

Description:
The setcollectInterestGasCostParams() function doesn’t include any input validation on the uint32
arguments being passed to the function.

Although the function is only accessible by the owner(avatar), collectInterestGasCost and
compCollectGasCost are imperative state variables as these are being used for gas costs during
interest transfers).

Recommendation:
Input validations must be included before updating important state variables

2. No Events emitted after imperative State Variable modification
Line no -307-314

Description:
Functions that update an imperative arithmetic state variable contract should emit an event after the
state modification.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

7



The setcollectInterestGasCostParams() function modifies some crucial arithmetic parameters like
collectInterestGasCost, compCollectGasCost in the GoodCompoundStakingV2 contract but doesn't
emit any event after the updation.

Since no event is emitted on updating these variables, it might be difficult to track it off-chain.

Recommendation:
An event should be fired after changing crucial arithmetic state variables.

3. Zero Address validations not found in initializer function

Description:
The init() function of GoodCompoundStakingV2 doesn’t include adequate zero address validations for
the addresses passed to the function.

Recommendation:
A require statement should be included in such functions to ensure no zero address is passed in the
arguments.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

8



Recommendation / Informational
1. Redundant comparisons to boolean Constants

Line no: 278, 297

Description:
Boolean constants can directly be used in conditional statements or require statements.

Therefore, it's not considered a better practice to explicitly use TRUE or FALSE in the require
statements.

Recommendation:
The equality to boolean constants could be removed from the above-mentioned line.

2. Unlocked Pragma statements found in the contracts
Line no: 2

Explanation:
During the code review, it was found that the contracts included unlocked pragma solidity version
statements.

It’s not considered a better practice in Smart contract development to do so as it might lead to
accidental deployment to a version with unfixed bugs.

Recommendation:
It’s always recommended to lock pragma statements to a specific version while writing contracts.

3. Coding Style Issues in the Contract

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

9



Explanation:
Code readability of a Smart Contract is largely influenced by the Coding Style issues and in some
specific scenarios, may lead to bugs in the future.

During the automated testing, it was found that the GoodCompoundStakingV2 contract had quite a few
code style issues.

Recommendation:
Therefore, it is recommended to fix the issues like naming convention, indentation, and code layout
issues in a smart contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

10



CompoundStakingV2.sol

High Severity Issues

No issues were found.

Medium Severity Issues

No issues were found.

Low Severity Issues

1. recover() function doesn’t adequately ensure the withdrawable amount of tokens
Line no: 435 - 444

Description:
The recover() function allows the owner of the contract to pass any erc20 token address to recover the
withdrawable token for the given address.

However, the function doesn’t include any adequate check to ensure that the total withdrawable amount
that is stored in the local variable toWithdraw, is actually more than zero.

This leads to a scenario where there could be no token balance for a given address, but the function
would still execute since it lacks adequate validations and lead to loss of gas.

Recommendation:
The function should include adequate checks to ensure that the withdrawable token amount is actually
more than zero.

2. No Events are emitted after updating the maxLiquidityPercentageSwap variable
This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

11



Line no -307-314

Description:
The setMaxLiquidityPercentageSwap() function updates the maxLiquidityPercentageSwap state
variable but doesn't emit any event after the modification.

Since no event is emitted on updating these variables, it might be difficult to track it off-chain.

Recommendation:
An event should be fired after changing crucial arithmetic state variables.

Recommendation / Informational
1. Redundant comparisons to boolean constants can be avoided

Line no: 190

Description:
Boolean constants can directly be used in conditional statements or require statements.

Therefore, it's not considered a better practice to explicitly use TRUE or FALSE in the require
statements. The require statement at Line 190 involves an unnecessary comparison to the boolean
constant, which can be avoided.

Recommendation:
The equality to boolean constants could be removed from the above-mentioned line.

2. Unlocked Pragma statements found in the contracts
Line no: 2

Explanation:
During the code review, it was found that the contracts included unlocked pragma solidity version
statements.

It’s not considered a better practice in Smart contract development to do so as it might lead to
accidental deployment to a version with unfixed bugs.

Recommendation:
It’s always recommended to lock pragma statements to a specific version while writing contracts.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

12



Call Graph
● GoodCompoundStakingV2 Contract

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

13



● SimplStakingV2

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

14



● Inheritance graph for GoodCompoundStakingV2 Contract

● Inheritance graph for SimpleStaking

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

15



Automated Audit Result

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

16



This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

17



Concluding Remarks
While conducting the audits of the GoodDollar smart contracts, it was observed that the contracts contain
Medium and Low severity issues.

Our auditors suggest that Medium and Low severity issues should be resolved by the developers. The
recommendations given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the GoodDollar platform or its product nor this audit is investment advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

18


