MahaDAO

Smart Contract Audit Report
ArthController.sol

B @ /@ MAHADAO

IMMUNE BYTES

Audits

May 02, 2021

Introduction
About MahaDAO
About ImmuneBytes

Documentation Details

Audit Process & Methodology
Audit Details

Audit Goals

Security Level References
High severity issues
Medium severity issues
Low severity issues

Recommendations
Automated Test Result
Concluding Remarks

Disclaimer

IMMUNE BYTES

~No oo g A~ A OO WO

-
N ©

13
14
14

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

IMMUNE BYTES

Introduction

1. About MahaDAO

ARTH is a new type of currency designed to not be pegged to government-owned
currencies (like US Dollar, Euro, or Chinese Yuan), but still remain relatively stable
(unlike Gold and Bitcoin).

Without being influenced by government-owned currencies, ARTH will be immune to
inflation. Through stability, ARTH also becomes a superior choice of currency for means
of trade. This is unlike Gold or Bitcoin, which are used more as a store of value rather
than a medium of exchange.

Visit http://mahadao.com/ to learn more about.

. About ImmuneBytes

ImmuneBytes is a security start-up to provide professional services in the blockchain
space. The team has hands-on experience in conducting smart contract audits,
penetration testing, and security consulting. ImmuneBytes’s security auditors have
worked on various A-league projects and have a great understanding of DeFi projects
like AAVE, Compound, Ox Protocol, Uniswap, dydx.

The team has been able to secure 15+ blockchain projects by providing security services
on different frameworks. ImmuneBytes team helps start-up with a detailed analysis of the

system ensuring security and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details

The MahaDAO team has provided documentation for the purpose of conducting the audit. The
documents are:

1.

https://docs.arthcoin.com/

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

http://mahadao.com/
http://immunebytes.com/
https://docs.arthcoin.com/

IMMUNE BYTES

Audit Process & Methodology

ImmuneBytes team has performed thorough testing of the project starting with analyzing the
code design patterns in which we reviewed the smart contract architecture to ensure it is
structured and safe use of third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find
any potential issues like Signature Replay Attacks, Unchecked External Calls, External Contract
Referencing, Variable Shadowing, Race conditions, Transaction-ordering dependence,
timestamp dependence, DoS attacks, and others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the
functions work as intended. In Automated Testing, we tested the Smart Contract with our
in-house developed tools to identify vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -

1. Testing the functionality of the Smart Contract to determine proper logic has been
followed throughout.

2. Analyzing the complexity of the code by thorough, manual review of the code,
line-by-line.

3. Deploying the code on testnet using multiple clients to run live tests.

4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs
and vulnerabilities.

5. Checking whether all the libraries used in the code are on the latest version.

6. Analyzing the security of the on-chain data.

Audit Details

Project Name: ARTH v2

Contract Name: ArthController.sol

Languages: Solidity(Smart contract)

Github commit hash for audit:d4d445c8e8fe9708ef04a94c09be2e961aa48105
GitHub link:
https://github.com/MahaDAO/arthcoin-v2/blob/develop/contracts/Arth/ArthController.sol
e Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode,
Contract Library, Slither, SmartCheck

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

https://github.com/MahaDAO/arthcoin-v2/blob/develop/contracts/Arth/ArthController.sol

IMMUNE BYTES

Audit Goals

The focus of the audit was to verify that the smart contract system is secure, resilient, and
working according to its specifications. The audit activities can be grouped into the following
three categories:

1. Security: Identifying security-related issues within each contract and within the system of
contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of
established smart contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary
areas of focus include:
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References

Every issue in this report was assigned a severity level from the following:

High severity issues will bring problems and should be fixed.
could potentially bring problems and should eventually be fixed.
are minor details and warnings that can remain unfixed but would be

better fixed at some point in the future.

Issues High
Open 1 3 5
Closed - - -

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

IMMUNE BYTES

High severity issues

1. Contract uses Uninitialized State Variables
Line - 32, 43, 110, 395
Description:
The ArthController contract accesses some imperative State Variables that have never
been initialized throughout the contract.

Mentioned below are those State Variables and the specific parts in the contract where
they are accessed:
e ARTH (Line 32) is being accessed in the getARTHInfo function at Line 395 but
was never initialized.
getARTHXPrice(),
ARTH.tota ﬁ_ﬂﬂiy{},

globalCollateralRatio,

e controllerAddress (Line 43) is being used in the onlyByOwnerOrGovernance
modifier at Line 110 but was never initialized.
modifier onlyByOwnerOrGovernance() {
require(
msg.sender ownerAddress | |
[o[: timelockAddress ||

msa ender controllerAddresspg

' ARTHController: FORBIDDEN:

Recommendation:

The above-mentioned state variables must be initialized within the constructor before
being used in any particular functions, to avoid any unwanted scenario during function
executions.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

IMMUNE BYTES

1. Multiplication is being performed on the result of Division
Line no - 414-417
Explanation:
During the automated testing of the ArthController.sol contract, it was found that one of
the functions in the contract is performing multiplication on the result of a Division.
Integer Divisions in Solidity might truncate. Moreover, performing division before
multiplication might lead to loss of precision.

The following functions involve division before multiplication in the mentioned lines:
e _getOraclePrice

th2GMUPrice =
HGMUPricer.getlLatestPrice()).mul(PRICE PRECISION) .div(

(10)** ethGMUPricerDecimals

Recommendation:

Solidity doesn’t encourage arithmetic operations that involve division before
multiplication. Therefore the above-mentioned function should be checked once and
redesigned if it does not lead to expected results.

2. Functions includes Costly Loops
Line no - 214, 365
Description:
The ArthController contract has for loops in some functions that includes state
variables like .length of a non-memory array in the condition of the for loops.

for (uint256 i = 0; 1 < arthPoolsArray. length; i++) {
if (arthPoolsArray[i] == poolAddress) {

arthPoolsArray[i] = address(0);
break;

As a result, these state variables consume a lot more extra gas for every iteration of the
loop.

The following functions in the contract includes such loops at the specified Line
numbers:

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

IMMUNE BYTES

e removePool at Line 214
e getGlobalCollateralValue at Line 365

Recommendation:
A better and effective approach would be to use a local variable instead of a state
variable like .length in a loop.

For instance,
local_variable = arthPoolsArray.length;
for (uint256 i = 0; i < local_variable; i++) {
if (arthPoolsArray[i] == poolAddress) {
arthPoolsArray[i] = address(0); // This will leave a null in the array and keep
the indices the same.
break;

3. Modifiers created but never used
Line no - 93, 116
Description:
The ArthController contract includes some modifiers, at the above-mentioned lines, that
have been created but never used throughout the contract.

ilslesR@¥=IalloNn | yByOwnerGovernanceOrPoo L@l

sender ownerAddress
msg.sender timelockAddress
arthPools[msg.sender] true,
"ARTHController: FORBIDDEN'
) ;

While this consumes additional space in the contract, it also adversely affects the gas
optimization as well as the readability of the smart contract code.

Recommendation:

Adequate use of all State Variable, modifiers, mappings etc, must be ensured in the
contract. If a particular modifier holds no significance it should be removed from the
contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

IMMUNE BYTES

1. External Visibility should be preferred
Desciption:
Those functions that are never called throughout the contract should be marked as
external visibility instead of public visibility.
This will effectively result in Gas Optimization as well.

Therefore, the following function must be marked as external within the contract:
o setARTHXAddress
setPriceTarget
setRefreshCooldown
setETHGMUOracle
setARTHXETHOTracle
setARTHETHOracle
toggleCollateralRatio
setMintingFee
setArthStep
setRedemptionFee
setOwner
setPriceBand
setTimelock
getGlobalCollateralRatio
getARTHInfo

Recommendation:
If the public visibility of these functions is not intended, the visibility keyword must be
modified to external.

2. Absence of Error messages in Require Statements
Line no - 89
Description:
In the ArthController contract, the modifier onlyCollateralRatioPauser includes a
require statement that does not include an error message.

modifier onlyCollateralRatioPauser() {
(hasRole (COLLATERAL_RATIO PAUSER, msg.sender));

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

IMMUNE BYTES

While this makes it troublesome to detect the reason behind a particular function revert,
it also reduces the readability of the code.

Recommendation:
Error Messages must be included in every require statement in the contract

3. Comparison to boolean Constant
Line no- 94, 120, 154,192, 206,
Description:
Boolean constants can directly be used in conditional statements or require statements.
Therefore, it's not considered a better practise to explicitly use TRUE or FALSE in the
require statements.

function EddPooU{addregg poolAddress)

onlyByOwnerOrGovernance

(
arthPools[poolAddress] false,
'"ARTHController: address present'

) ;

Recommendation:
The equality to boolean constants must be removed from the above-mentioned line.

4. No Event emission for crucial State Variable modification
Line no - 242, 291, 299, 323, 307
Description:
Functions that modify an imperative arithmetic state variable contract should emit an
event after the modification.
However, during the automated testing it was found that the following functions modify
some crucial arithmetic parameters like priceTarget, mintingFee, redemptionFee,
priceBand etc, but doesn’t emit any event afterwards:
e setPriceBand
setRedemptionFee
setArthStep
mintingFee
setPriceTarget

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

10

IMMUNE BYTES

Since there is no event emitted on updating these variables, it might be difficult to track it
off-chain.

Recommendation:
An event should be fired after changing crucial arithmetic state variables.

5. State Variable never used in the Contract
Line no - 32
Description:
ARTHX state variable has been initialized in the contract at Line 32 but never used
throughout the contract.

| IERC20 ARTHX;

Recommendation:
Effective use of all State Variables must be ensured in the contract. Unused variables
should be removed from the contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

11

IMMUNE BYTES

Recommendations

1. Coding Style Issues in the Contract
Explanation:
Code readability of a Smart Contract is largely influenced by the Coding Style issues and
in some specific scenarios may lead to bugs in the future.

During the automated testing, it was found that the ArthController contract had quite a
few code style issues.

Parameter ArthController.setOwner(address)._ownerAddress (contracts/Arth/flat_ArthControl.sol#1206) is not in mixedCase
Parameter ArthController.setPriceBand(uint256)._priceBand (contracts/Arth/flat_ArthControl.sol#1214) is not in mixedCase
Variable ArthController.ARTH (contracts/A ‘flat_ArthControl.sol#922) is not in mixedCase
Variable ArthController.ARTHX (contracts/Arth/flat ArthControl.sol#923) is not in mixedCase

Variable ArthController. ETHGMUPricer (contracts/Arth/flat_ArthControl.sol#925) is not in mixedCase
Variable ArthController. ARTHETHOracle (contracts/Arth/flat_ArthControl.sol#926) is not in mixedCase
Variable ArthController. ARTHXETHOracle (contracts/Arth/flat_ArthControl.sol#927) is not in mixedCase
Variable ArthController.DEFAULT_ADMIN ADDRESS (contracts/Arth/flat_ArthControl.sol#938) is not in mixedCase

Recommendation:
Therefore, it is highly recommended to fix the issues like naming convention, indentation,
and code layout issues in a smart contract.

2. NatSpec Annotations must be included
Description:
The smart contracts do not include the NatSpec annotations adequately.

Recommendation:
Cover by NatSpec all Contract methods.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

12

IMMUNE BYTES

Automated Test Result

ArthController._getOraclePrice(ArthController.PriceChoice) (contracts/Arth/flat_ArthControl.sol#1360-1326) performs a multiplication on the result of a division
-eth2GMUPrice = uint256(_ETHGMUPricer.getlatestPrice()).mul(_PRICE_PRECISION).div(uint256(10) ** _ethGMUPricerDecimals) (contracts/Arth/flat_ArthControl
)

-eth2GMUPrice.mul(_PRICE_PRECISION).div(priceVsETH) (contracts/Arth/flat_ArthCentrol.sol#1325)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply

ArthController.setOwner(address) (contracts/Arth/flat_ArthControl.sol#1206-1212) should emit an event for:
- ownerAddress = _ownerAddress (contracts/Arth/flat_ArthControl.sol#1211)
- ownerAddress = _ownerAddress (contracts/Arth/flat_ArthControl.sol#1211)
ArthController.setTimelock(address) (contracts/Arth/flat_ArthControl.sol#1222-1228) should emit an event for:
- timelockAddress = newTimelock (contracts/Arth/flat_ArthControl.sol#1227)
- timelockAddress = newTimelock (contracts/Arth/flat_ArthControl.sol#1227)
Reference: https ithub.com/crytic/slither/wiki/Detector-Documentation#missing-events-access-control
INFO:Detectors:
ArthController.setPriceTarget(uint256) (contracts/Arth/flat_ArthControl.sol#1133-1139) should emit an event for:
- priceTarget = newPriceTarget (contracts/Arth/flat_ArthControl.sol#1138)
ArthController.setRefreshCooldown(uint256) (contracts/Arth/flat_ArthControl.sol#1141-1147) should emit an event for:
- refreshCooldown = newCooldown (contracts/Arth/flat_ArthControl.sol#1146)
ArthController.setETHGMUOracle(address) (contracts/Arth/flat_ArthControl.sol#1149-1157) should emit an event for:
- _ethGMUPricerDecimals = _ETHGMUPricer.getDecimals() (contracts/Arth/flat_ArthControl.sol#1156)
ArthController.setMintingFee(uint256) (contracts/Arth/flat_ArthControl.sol#1182-1188) should emit an event for:
- mintingFee = fee (contracts/Arth/flat_ArthControl.sol#1187)

ArthController.constructor(address,address)._creatorAddress (contracts/Arth/flat_ArthControl.sol#1021) lacks a zero-check on :

- creatorAddress = _creatorAddress (contracts/Arth/flat_ArthControl.sol#1022)

- ownerAddress = _creatorAddress (contracts/Arth/flat_ArthControl.sol#1025)
ArthController.constructor(address,address)._timelockAddress (contracts/Arth/flat ArthControl.sol#1021) lacks a zero-check on :

- timelockAddress = _timelockAddress (contracts/Arth/flat_ArthControl.sol#1023)
ArthController.setARTHXAddress(address)._arthxAddress (contracts/Arth/flat_ArthControl.sol#1125) lacks a zero-check on :

- arthxAddress = _arthxAddress (contracts/Arth/flat_ArthControl.sol#1130)
ArthController.setETHGMUOracle(address)._ethGMUConsumerAddress (contracts/Ar lat_ArthControl.sol#1149) lacks a zero-check on :

- ethGMUConsumerAddress = _ethGMUConsumerAddress (contracts/Arth/flat_ArthControl.sol#1154)
ArthController.setARTHXETHOracle(address, address)._arthxOracleAddress (contracts/Arth/flat_ArthControl.sol#1160) lacks a zero-check on :

- arthxETHOracleAddress = _arthxOracleAddress (contracts/Arth/flat_ArthContrel.sol#1163)
ArthController.setARTHXETHOracle (address, address)._wethAddress (contracts/Arth/flat ArthControl.sol#1161) lacks a zero-check on :

- wethAddress = _wethAddress (contracts/Arth/flat_ArthControl.sol#1165)
ArthController.setARTHETHOracle(address, address)._arthOracleAddress (contracts/Arth/flat_ArthControl.sol¥1168) lacks a zero-check on :

- arthETHOracleAddress = _arthOracleAddress (contracts/Arth/flat_ArthControl.sol#1173)
ArthController.setARTHETHOracle(address, address)._wethAddress (contracts/Arth/flat_ArthControl.sol¥1168) lacks a zero-check on :

- wethAddress = _wethAddress (contracts/Arth/flat_ArthControl.sol#1175)

ArthController.constructor(address,address) (contracts/Arth/flat_ArthControl.sol#1021-1037) uses literals with too many digits:
- priceTarget = 1000000 (contracts/Arth/flat_ArthControl.sol#1034)

ArthController.constructor(address,address) (contracts/Arth/flat_ArthControl.sol#1021-1037) uses literals with too many digits:
- globalCollateralRatio = 1000000 (contracts/Arth/flat_ArthControl.sol#1036)

ArthController.refreshCollateralRatio() (contracts/Arth/flat_ArthControl.sol#1043-1073) uses literals with too many digits:
- globalCollateralRatio.add(arthStep) >= 1000000 (contracts/Arth/flat_ArthControl.sol#1065)

ArthController.refreshCollateralRatio() (contracts/Arth/flat_ArthControl.sol#1043-1073) uses literals with too many digits:

toggleCollateralRatio() should be declared external:

- ArthController.toggleCollateralRatio() (contracts/Arth/flat_ArthControl.sol#1178-1180)
setMintingFee(uint256) should be declared external:

- ArthController.setMintingFee(uint256) (contracts/Arth/flat_ArthControl.sol#1182-1188)
setArthStep(uint256) should be declared external:

- ArthController.setArthStep(uint256) (contracts/Arth/flat ArthControl.sol#1190-1196)
setRedemptionFee(uint256) should be declared external:

- ArthController.setRedemptionFee(uint256) (contracts/Arth/flat_ArthControl.sol#1198-1204)
setOwner(address) should be declared external:

- ArthController.setOwner(address) (contracts/Arth/flat_ArthControl.sol#1206-1212)
setPriceBand(uint256) should be declared external:

- ArthController.setPriceBand(uint256) (contracts/Arth/flat_ArthControl.sol#1214-1220)
setTimelock(address) should be declared external:

- ArthController.setTimelock(address) (contracts/Arth/flat ArthControl.sol#1222-1228)
getGlobalCollateralRatio() should be declared external:

- ArthController.getGlobalCollateralRatio() (contracts/Arth/flat_ArthControl.sol#1249-1251)

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

13

IMMUNE BYTES

Concluding Remarks

While conducting the audits of MahaDAO smart contract - ArthController.sol, it was observed
that the contracts contain High, Medium and Low severity issues, along with a few areas of
recommendations.

Our auditors suggest that High, Medium and Low severity issues should be resolved by
MahaDAO developers. Resolving the areas of recommendations are up to the team'’s discretion.
The recommendations given will improve the operations of the smart contract.

Disclaimer

ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart
contract. Securing smart contracts is a multistep process, therefore running a bug bounty
program as a complement to this audit is strongly recommended.

Our team does not endorse the MahaDAO platform or its product neither this audit is investment
advice.
Notes:

e Please make sure contracts deployed on the mainnet are the ones audited.

e Check for the code refactor by the team on critical issues.

ImmuneBytes Pvt Ltd.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

14

