MahaDAO
Smart Contract Audit Report

Genesis.sol

B @ /@ MAHADAO

IMMUNE BYTES

Audits

May 02, 2021



Introduction
About MahaDAO
About ImmuneBytes

Documentation Details

Audit Process & Methodology
Audit Details

Audit Goals

Security Level References
High severity issues
Medium severity issues
Low severity issues

Recommendations
Automated Test Result
Concluding Remarks

Disclaimer

IMMUNE BYTES

= S ¥

o O O 00 ~Noooouo ua b~ A OO WO

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.



IMMUNE BYTES

Introduction

1. About MahaDAO

ARTH is a new type of currency designed to not be pegged to government-owned
currencies (like US Dollar, Euro, or Chinese Yuan), but still remain relatively stable
(unlike Gold and Bitcoin).

Without being influenced by government-owned currencies, ARTH will be immune to
inflation. Through stability, ARTH also becomes a superior choice of currency for means
of trade. This is unlike Gold or Bitcoin, which are used more as a store of value rather
than a medium of exchange.

Visit http://mahadao.com/ to learn more about.

. About ImmuneBytes

ImmuneBytes is a security start-up to provide professional services in the blockchain
space. The team has hands-on experience in conducting smart contract audits,
penetration testing, and security consulting. ImmuneBytes’s security auditors have
worked on various A-league projects and have a great understanding of DeFi projects
like AAVE, Compound, Ox Protocol, Uniswap, dydx.

The team has been able to secure 15+ blockchain projects by providing security services
on different frameworks. ImmuneBytes team helps start-up with a detailed analysis of the

system ensuring security and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details

The MahaDAO team has provided documentation for the purpose of conducting the audit. The
documents are:

1.

https://docs.arthcoin.com/

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.


http://mahadao.com/
http://immunebytes.com/
https://docs.arthcoin.com/

IMMUNE BYTES

Audit Process & Methodology

ImmuneBytes team has performed thorough testing of the project starting with analyzing the
code design patterns in which we reviewed the smart contract architecture to ensure it is
structured and safe use of third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find
any potential issues like Signature Replay Attacks, Unchecked External Calls, External Contract
Referencing, Variable Shadowing, Race conditions, Transaction-ordering dependence,
timestamp dependence, DoS attacks, and others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the
functions work as intended. In Automated Testing, we tested the Smart Contract with our
in-house developed tools to identify vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -

1. Testing the functionality of the Smart Contract to determine proper logic has been
followed throughout.

2. Analyzing the complexity of the code by thorough, manual review of the code,
line-by-line.

3. Deploying the code on testnet using multiple clients to run live tests.

4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs
and vulnerabilities.

5. Checking whether all the libraries used in the code are on the latest version.

6. Analyzing the security of the on-chain data.

Audit Details

Project Name: ARTH v2

Contract Name: Genesis.sol

Languages: Solidity(Smart contract)

Github commit hash for audit:95fac3e9dca2af67c974f2f87c2c385c4bc03df2

GitHub link:
https://github.com/MahaDAQO/arthcoin-v2/blob/develop/contracts/Genesis/Genesis.sol
e Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode,
Contract Library, Slither, SmartCheck

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.


https://github.com/MahaDAO/arthcoin-v2/blob/develop/contracts/Genesis/Genesis.sol

IMMUNE BYTES

Audit Goals

The focus of the audit was to verify that the smart contract system is secure, resilient, and
working according to its specifications. The audit activities can be grouped into the following
three categories:

1. Security: Identifying security-related issues within each contract and within the system of
contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of
established smart contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary
areas of focus include:
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References

Every issue in this report was assigned a severity level from the following:

High severity issues will bring problems and should be fixed.
could potentially bring problems and should eventually be fixed.
are minor details and warnings that can remain unfixed but would be

better fixed at some point in the future.

Issues High
Open 1 1 2
Closed - - -

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.



IMMUNE BYTES

High severity issues

1. Zero Maha Token amount is minted while calling _redeemARTHAndMAHA function
Line no - 314
Description:
As per the current design of the _redeemARTHandMAHA function, the Genesis token is
being burnt while the ARTH and MAHA token is to be minted and transferred to the user.
However, the function does not seem to be adequate as it mints ZERO MAHA tokens
every time it is called. This will lead to an unwanted scenario where no MAHA Token is
ever minted.

unction redeemARTHAndMAHA (uin t
require(balance0f(msg.sende amount, 'Genesis: balance < a

_burn(n , amount);
_ARTH.pool : der, amount);

uint256 mahaAmount = 0;

Recommendation:
The distribution mechanism of MAHA tokens in the redeemARTHANndMAHA function,
should be implemented in the function body to avoid ZERO tokens being minted.

1. Modifier hasStarted never used in the Genesis Contract
Line no-70
Description:
The Genesis contract includes the hasStarted modifier at Line 70 but never uses it
throughout the contract.

modifier hasStarted() {
require(block.timestamp >= startTime, 'Genesis: not started');

r

While this consumes additional space in the contract, it also adversely affects the gas
optimization as well as the readability of the smart contract code.
Recommendation:

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.



IMMUNE BYTES

Adequate use of all State Variable, modifiers, mappings etc must be ensured in the
contract. If the hasStarted modifier holds no significance it should be removed from the
contract.

1. Absence of Zero Address Validation

Line no- 124, 139, 146, 153
Description:
The Genesis Contract includes quite a few functions that updates some of the imperative
addresses in the contract like arthWETHPoolAddres, arthETHPairAddress etc.
However, during the automated testing of the contact it was found that no Zero Address
Validation is implemented on the following functions while updating the address state
variables of the contract:

e setPoolAndPairs

o setARTHWETHPoolAddress

e setARTHETHPairAddress

o setARTHXETHPairAddress

Recommendation:
A require statement should be included in such functions to ensure no zero address is
passed in the arguments.

2. External Visibility should be preferred
Description:
Those functions that are never called throughout the contract should be marked as
external visibility instead of public visibility.
This will effectively result in Gas Optimization as well.

Therefore, the following function must be marked as external within the contract:
mint #Line 178

redeem #Line 194

distribute #Line 203

getlsRaisedBetweenCaps #Line 219

Recommendation:
If the PUBLIC visibility of the above-mentioned functions is not intended, then the
EXTERNAL Visibility keyword should be preferred.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.



IMMUNE BYTES

Recommendations

1. Coding Style Issues in the Contract
Description:
Code readability of a Smart Contract is largely influenced by the Coding Style issues and
in some specific scenarios may lead to bugs in the future.

During the automated testing, it was found that the Genesis contract had quite a few
code style issues.

~ Genesl1s.setDuration(uint256)._duration (contracts/Genesis/FLAT_Genesis.sol#1592) 1s not 1n mixedCase

- Genesis.setPoolAndPairs(address,address,address)._arthETHPool (contracts/Genesis/FLAT Genesis.sol#1597) is not in mixedCase
- Genesis.setPoolAndPairs(address,address,address)._arthETHPair (contracts/Genesis/FLAT Genesis.sol#1598) is not in mixedCase
- Genesis.setPoolAndPairs(address,address,address)._arthxETHPair (contracts/Genesis/FLAT Genesis.sol#1599) is not in mixedCase
- Genesis.setCaps(uint256,uint256)._softCap (contracts/Genesis/FLAT_Genesis.sol#1606) is not in mixedCase

r Genesis.setCaps(uint256,uint256)._hardCap (contracts/Genesis/FLAT Genesis.sol#1666) is not in mixedCase

Variable Genesis._WETH (contracts/Genesis/FLAT_Genesis.sol#1496) is not in mixedCase
Variable Genesis._ARTH (contracts/Genesis/FLAT Genesis.sol#1497) is not in mixedCase
Variable Genesis._ ARTHX (contracts/Genesis/FLAT Genesis.sol#1498) is not in mixedCase
Variable Genesis._CURVE (contracts/Genesis/FLAT_Genesis.sol#1499) is not in mixedCase
Variable Genesis. MAHA (contracts/Genesis/FLAT Genesis.sol#1500) is not in mixedCase
Variable Genesis._ROUTER (contracts/Genesis/FLAT_Genesis.sol#1561) is not in mixedCase

Recommendation:
Therefore, it is highly recommended to fix the issues like naming convention, indentation,
and code layout issues in a smart contract.

2. NatSpec Annotations must be included
Description:
The smart contracts do not include the NatSpec annotations adequately.

Recommendation:
Cover by NatSpec all Contract methods.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.



IMMUNE BYTES

Automated Test Result

Genesis.setPoolAndPairs (address,address,address)._arthETHPool (contracts/Genesis/FLAT Genesis.sol#1597) lacks a zero-check on
- arthwETHPoolAddres = _arthETHPool (contracts/Genesis/FLAT Genesis.sol#1601)
Genesis.setPoolAndPairs (address,address,address)._arthETHPair (contracts/Genesis/FLAT Genesis.sol#1598) lacks a zero-check on
- arthETHPairAddress = _arthETHPair (contracts/Genesis/FLAT Genesis.sol#1662)
Genesis.setPoolAndPairs(address,address, address)._arthxETHPair (contract i LAT_Genesis.sol#1599) lacks a zero-check on
- arthxETHPairAddress = _arthxETHPair (contracts/Genesis/FLAT Genesis.sol#1603)
Genesis.setARTHWETHPoolAddress (address).poolAddress (contract is/FLAT_Genesis.sol#1611) lacks a zero-check on :
- arthWETHPoolAddres = poolAddress (contracts [s/FLAT_Genesis.sol#1615)
Genesis.setARTHETHPairAddress(address).pairAddress (contracts is/FLAT Genesis.sol#1618) lacks a zero-check on :
- arthETHPairAddress = pairAddress (contracts [s/FLAT_Genesis.sol#1622)
Genesis.setARTHXETHPairAddress (address).pairAddress (contract is/FLAT Genesis.sol#1625) lacks a zero-check on :
- arthxETHPairAddress = pairAddress (contracts/Genesis/FLAT_Genesis.sol#1629)

- Genesis.setDuration(uint256)._duration (contracts/Genesis/FLAT Genesis.sol#1592) is not in mixedCase
- Genesis.setPoolAndPairs(address,address,address)._arthETHPool (contracts/Genesis/FLAT_Genesis.sol#1597) is not in mixedCase
- Genesis.setPoolAndPairs(address,address,address)._arthETHPair (contracts/Genesis/FLAT_Genesis.sol#1598) is not in mixedCase
- Genesis.setPoolAndPairs(address,address,address)._arthxETHPair (contracts/Genesis/FLAT_Genesis.sol#1599) is not in mixedCase
- Genesis.setCaps(uint256,uint256)._softCap (contracts is/FLAT_Genesis.sol#1606) is not in mixedCase
- Genesis.setCaps(uint256,uint256)._hardCap (contracts/Genesis/FLAT_Genesis.sol#1606) is not in mixedCase
Variable Genesis._WETH (contracts/Genesis/FLAT_Genesis.sol#1496) is not in mixedCase
Variable Genesis._ARTH (contract is/FLAT_Genesis.sol#1497) is not in mixedCase
Variable Genesis._ARTHX (contracts/Genesis/FLAT Genesis.sol#1498) is not in mixedCase
mint(uint256) should be declared external:
- Genesis.mint(uint256) (contracts/Genesis/FLAT Genesis.sol#1650-1664)
redeem(uint256) should be declared external:
- Genesis.redeem(uint256) (contracts/Genesis/FLAT_Genesis.sol#1666-1673)
distribute() should be declared external:
- Genesis.distribute() (contracts/Genesis/FLAT Genesis.sol#1675-1685)
getIsRaisedBelowSoftCap() should be declared external:
- Genesis.getIsRaisedBelowSoftCap() (contracts/Genesis/FLAT_Genesis.sol#1687-1689)
getIsRaisedBetweenCaps() should be declared external:
- Genesis.getIsRaisedBetweenCaps() (contracts/Genesis/FLAT Genesis.sol#1691-1694)
getPercentRaised() should be declared external:
- Genesis.getPercentRaised() (contracts/Genesis/FLAT Genesis.sol#1696-1698)

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.



IMMUNE BYTES

Concluding Remarks

While conducting the audits of MahaDAO smart contract - Genesis.sol, it was observed that the
contracts contain High, Medium and Low severity issues, along with a few areas of
recommendations.

Our auditors suggest that High, Medium and Low severity issues should be resolved by
MahaDAO developers. Resolving the areas of recommendations are up to the team'’s discretion.
The recommendations given will improve the operations of the smart contract.

Disclaimer

ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart
contract. Securing smart contracts is a multistep process, therefore running a bug bounty
program as a complement to this audit is strongly recommended.

Our team does not endorse the MahaDAO platform or its product neither this audit is investment
advice.
Notes:

e Please make sure contracts deployed on the mainnet are the ones audited.

e Check for the code refactor by the team on critical issues.

ImmuneBytes Pvt Ltd.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

10



