
MahaDAO

Smart Contract Audit Report
StakeRewards.sol

May 02, 2021



Introduction 3
About MahaDAO 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level References 5
High severity issues 6
Medium severity issues 6
Low severity issues 8

Recommendations 11

Automated Test Result 12

Concluding Remarks 13

Disclaimer 13

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

2



Introduction

1. About MahaDAO
ARTH is a new type of currency designed to not be pegged to government-owned
currencies (like US Dollar, Euro, or Chinese Yuan), but still remain relatively stable
(unlike Gold and Bitcoin).

Without being influenced by government-owned currencies, ARTH will be immune to
inflation. Through stability, ARTH also becomes a superior choice of currency for means
of trade. This is unlike Gold or Bitcoin, which are used more as a store of value rather
than a medium of exchange.

Visit http://mahadao.com/ to learn more about.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain
space. The team has hands-on experience in conducting smart contract audits,
penetration testing, and security consulting. ImmuneBytes’s security auditors have
worked on various A-league projects and have a great understanding of DeFi projects
like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 15+ blockchain projects by providing security services
on different frameworks. ImmuneBytes team helps start-up with a detailed analysis of the
system ensuring security and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The MahaDAO team has provided documentation for the purpose of conducting the audit. The
documents are:

1. https://docs.arthcoin.com/

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

3

http://mahadao.com/
http://immunebytes.com/
https://docs.arthcoin.com/


Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the
code design patterns in which we reviewed the smart contract architecture to ensure it is
structured and safe use of third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find
any potential issues like Signature Replay Attacks, Unchecked External Calls, External Contract
Referencing, Variable Shadowing, Race conditions, Transaction-ordering dependence,
timestamp dependence, DoS attacks, and others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the
functions work as intended. In Automated Testing, we tested the Smart Contract with our
in-house developed tools to identify vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been

followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code,

line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs

and vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: ARTH v2
● Contract Name: StakeRewards.sol
● Languages: Solidity(Smart contract)
● Github commit hash for audit:8bcf83f8d6a3d5675d400ec63acbf079ba638bed
● GitHub link:

https://github.com/MahaDAO/arthcoin-v2/blob/master/contracts/Staking/StakingRewards
.sol

● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode,
Contract Library, Slither, SmartCheck

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

4

https://github.com/MahaDAO/arthcoin-v2/blob/master/contracts/Staking/StakingRewards.sol
https://github.com/MahaDAO/arthcoin-v2/blob/master/contracts/Staking/StakingRewards.sol


Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and
working according to its specifications. The audit activities can be grouped into the following
three categories:

1. Security: Identifying security-related issues within each contract and within the system of
contracts.

2. Sound Architecture: Evaluation of the architecture of this system through the lens of
established smart contract best practices and general software best practices.

3. Code Correctness and Quality: A full review of the contract source code. The primary
areas of focus include:

a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References
Every issue in this report was assigned a severity level from the following:

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be

better fixed at some point in the future.

Issues High Medium Low

Open 1 2 6

Closed - - -

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

5



High severity issues

1. _arthConroller is never initialized
Line no - 56, 458
Description:
The _arthController state variable is never initialized throughout the contract.

However, it is used in the crBoostMultiplier function at line 458 to call the
getGlobalCollateralRatio function.

Since the _arthController is never initialized, it will lead to an unexpected scenario that
will adversely affect the intended behaviour of the function.

Recommendation:
_arthController must be initialized adequately before being used in a particular function.

Medium severity issues

1. State Variables Updated After External Call. Violation of Check_Effects_Interaction
Pattern
Line no -524-539, 576-593,497-498, 277-279,208-209, 263-265
Description:
As per the Check_Effects_Interaction Pattern in Solidity, external calls should be made
at the very end of the function. Event emission as well as any state variable modification
must be done before the external call is made.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

6



However, during the automated testing, it was found that some of the functions in the
StakingRewards contract violate this Check-Effects-Interaction pattern at the
above-mentioned lines.

Recommendation:
Modification of any State Variables must be performed before making an external call.
Check Effects Interaction Pattern must be followed while implementing external calls in a
function.

2. for Loop in withdrawLocked function is extremely costly
Line no - 227
Description:
The for loop in the withdrawLocked function includes state variables like .length of a
non-memory array in the condition of the for loops.

As a result, these state variables consume a lot more extra gas for every iteration of the
loop.

Recommendation:
It’s quite effective to use a local variable instead of a state variable like .length in a loop.
For instance,
local_variable = _lockedStakes[msg.sender].length;
for (uint256 i = 0; i < local_variable; i++) {

if (kekId == _lockedStakes[msg.sender][i].kekId) {
thisStake = _lockedStakes[msg.sender][i];
theIndex = i;
break;

}
}

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

7

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html#:~:text=To%20implement%20the%20Check%20Effects,vulnerability%2C%20we%20can%20act%20accordingly.


Low severity issues

1. getReward function should include require statement instead of IF-Else Statement
Line no: 495-499
Description:
The getReward function includes an if statement at the very beginning of the function
to check whether or not the reward amount for a particular user is more than Zero.
Most importantly, this is a strict check and the function body is only executed if this IF
statement holds true.

In Solidity, in order to check for such strict validations in a function, require statements
are considered more preferable and effective. While it helps in gas optimizations it also
enhances the readability of the code.

Recommendation:
Use require statement instead of IF statement in the above-mentioned function line.
For instance,
require(reward > 0,”Error MSG:Reward Amount for this address is ZERO”);

2. External Visibility should be preferred
Description:
Those functions that are never called throughout the contract should be marked as
external visibility instead of public visibility.
This will effectively result in Gas Optimization as well.
Therefore, the following function must be marked as external within the contract:

● lockedBalanceOf
● getReward

Recommendation:
If the public visibility of these functions is not intended, the visibility keyword must be
modified to external.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

8



3. Comparison to boolean Constant
Line no: 237, 521, 549
Description:
Boolean constants can directly be used in conditional statements or require statements.
Therefore, it's not considered a better practise to explicitly use TRUE or FALSE in the
require statements.

Recommendation:
The equality to boolean constants must be removed from the above-mentioned line.

4. Return Value of an External Call is never used Effectively
Line no - 277, 497
Description:
The external calls made in the above-mentioned lines do return a boolean value that
indicates whether or not the external call made was successful.
These boolean return values can be used in the function as a check to ensure that the
further execution of the function is only allowed if the external is successfully made.
However, the StakingRewards contract never uses these return values throughout the
contract.

Recommendation:
Effective use of all the return values from external calls must be ensured within the
contract.

5. No Events emitted after imperative State Variable modification
Line no - 356, 360
Description:
Functions that update an imperative arithmetic state variable contract should emit an
event after the updation.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

9



The following functions modify some crucial arithmetic parameters like ownerAddress,
timelockAddress, rewardRate etc, in the StakingReward contract but do not emit an
event after that:

● setOwnerAndTimelock
● setRewardRate

Since there is no event emitted on updating this variable, it might be difficult to track it
off-chain.

Recommendation:
An event should be fired after updating the rewardRate variable.

6. Absence of Error messages in Require Statements
Line no - 275
Description:
The recoverERC20 includes a require statement in the StakingRewards.sol contract
that does not include an error message.

While this makes it troublesome to detect the reason behind a particular function revert,
it also reduces the readability of the code.

Recommendation:
Error Messages must be included in every require statement in the contract

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

10



Recommendations
1. NatSpec Annotations must be included

Description:
A smart contract does not include the NatSpec annotations adequately.

Recommendation:
Cover by NatSpec all Contract methods.

2. Commented codes must be wiped out before deployment
Description:
The StakingReward.sol contract includes quite a few commented codes at the end of the
contract.
This badly affects the readability of the code.

Recommendation:
If these instances of code are not required in the current version of the contract, then the
commented codes must be removed before deployment.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

11



Automated Test Result

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

12



Concluding Remarks
While conducting the audits of MahaDAO smart contract - StakeRewards.sol, it was observed
that the contracts contain High, Medium and Low severity issues, along with a few areas of
recommendations.

Our auditors suggest that Low severity issues should be resolved by MahaDAO developers.
Resolving the areas of recommendations are up to the team’s discretion. The recommendations
given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart
contract. Securing smart contracts is a multistep process, therefore running a bug bounty
program as a complement to this audit is strongly recommended.

Our team does not endorse the MahaDAO platform or its product neither this audit is investment
advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes Pvt Ltd.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

13


