
MahaDAO
ARTH Loans

Smart Contract Audit Report

August 10, 2021

Introduction 3
About MahaDAO 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level References 5

Contract Name: TroveManager 6
High severity issues 6
Medium severity issues 8
Low severity issues 9

Contract Name: StabilityPool 11
High severity issues 11
Medium severity issues 11
Low severity issues 12

Contract Name: ActivePool 14
High severity issues 14
Medium severity issues 14
Low severity issues 15

Contract Name: BorrowerOperations 16
High severity issues 16
Medium severity issues 16
Low severity issues 17

Fuzz Testing 19

Automated Audit Result 22

Concluding Remarks 25

Disclaimer 25

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

2

Introduction

1. About MahaDAO
ARTH is a new type of currency designed to not be pegged to government-owned currencies (like US
Dollar, Euro, or Chinese Yuan), but still remain relatively stable (unlike Gold and Bitcoin).

Without being influenced by government-owned currencies, ARTH will be immune to inflation. Through
stability, ARTH also becomes a superior choice of currency for means of trade. This is unlike Gold or
Bitcoin, which are used more as a store of value rather than a medium of exchange.

Visit http://mahadao.com/ to learn more about.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain space. The team
has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and have a
great understanding of DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 15+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-up with a detailed analysis of the system ensuring security
and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The MahaDAO team has provided the following doc for the purpose of audit:

1. https://docs.liquity.org/

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

3

http://mahadao.com/
http://immunebytes.com/
https://docs.liquity.org/

Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any potential
issues like Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable
Shadowing, Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and
others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs and

vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: MahaDAO
● Contracts Name: TroveManager, StabilityPool, ActivePool, BorrowerOperations
● Languages: Solidity(Smart contract), Javascript(Unit Testing)
● Github commit hash for audit: 117c1005adb4ad8e443a4f3e803adb539a128cf2
● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,

Slither, SmartCheck, Fuzz

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

4

https://github.com/MahaDAO/arth-vaults

Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart

contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include:
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References
Every issue in this report was assigned a severity level from the following:

Admin/Owner Privileges can be misused either intentionally or unintentionally.

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some

point in the future.

Issues High Medium Low

Open 1 6 4

Closed - - -

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

5

Contract Name: TroveManager

High severity issues

1. Trove’s Status is not adequately validated in the _getTotalsFromBatchLiquidate_NormalMode
function
Line no: 967-998

Explanation
The protocol uses a batchLiquidateTroves function that is used to liquidate a custom list of troves.
This function includes two imperative internal functions, i.e.,
_getTotalFromBatchLiquidate_RecoveryMode & _getTotalFromBatchLiquidate_NormalMode
which are used when the batch liquidation sequence starts during Recovery Mode or Normal mode
respectively.

As far as the _getTotalFromBatchLiquidate_RecoveryMode function is concerned, it does include
adequate validation to ensure that the Troves passed as an argument are in an Active status (Line
908-910), before proceeding with the further execution in the function body. All the Non-Active troves
are skipped.

_getTotalFromBatchLiquidate_RecoveryMode function

However, no such validation was found in the _getTotalFromBatchLiquidate_NormalMode function.
This leads to an unexpected scenario where even the Non Active troves are forwarded for further
execution in the function body.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

6

_getTotalFromBatchLiquidate_NormalMode function

This issue is handled effectively when the batchLiquidateTroves function is called from the external
function liquidate(). This is because the liquidate function uses a require statement at Line 329 to
validate the argument passed and ensure that the Trove is Active for the passed address.

However, since the batchLiquidateTroves is a Public function, it can be called individually without
triggering the liquidate function as well and therefore should include all the imperative and relevant
validations itself.

Recommendation
If the above-mentioned scenario is not intended or was not considered while designing the function, it is
recommended to include adequate and necessary validations in the function for all the arguments
passed to it before proceeding with further execution.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

7

Medium severity issues

1. Redundant Local variable used in Function. Adverse effect on Gas Optimization
Line no - 366

Explanation
Keeping in mind the bulky size of the TroveManager contract, the protocol uses Variable container
structs which are used to assign hold or return variables in the liquidation functions of the contract.

This is done to avoid any Stack too Deep scenarios as well as effectively manage the Gas optimization
for the protocol.

However, the _liquidateNormalMode at Line 366 unnecessarily uses a local variable collToLiquidate
instead of using the already available vars.collToLiquidate from the
LocalVariables_InnerSingleLiquidateFunction struct.

_liquidateNormalMode function in TroveManager

While this depicts a redundant use of the local variable collToLiquidate, it also adversely affects the
gas optimization factor of the function.

Recommendation
Considering the fact that the TroveManager.sol contract is quite bulky in nature, every possible step
must be taken to optimize the gas usage in the protocol.

The above mentioned issue can be resolved by simply using the collToLiquidate with the help of
already defined structs.

For instance, the _liquidateRecoveryMode function (at Line 417) implements this same variable in a
comparatively effective manner and thus can be taken as reference to modify the
_liquidateNormalMode function.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

8

_liquidateRecoveryMode function TroveManager

2. Multiplication is being performed on the result of Division
Line no - 1534-1546

Explanation
During the automated testing of the TroveManager contract, it was found that some of the functions in
the contract are performing multiplication on the result of a Division.
Integer Divisions in Solidity might truncate. Moreover, this performing division before multiplication
might lead to loss of precision.

The following functions involve division before multiplication in the mentioned lines:
● _redistributeDebtAndColl at 1534-1546

Automated Test Results for the above-mentioned functions

Recommendation
Solidity doesn’t encourage arithmetic operations that involve division before multiplication. Therefore
the above-mentioned function should be checked once and redesigned if they do not lead to expected
results.

Low severity issues

No issues found

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

9

Informational

1. Coding Style Issues in the TroveManager

Explanation
Code readability of a smart contract is largely influenced by the Coding Style issues and in some
specific scenarios may lead to bugs in the future.

During the automated testing, it was found that the TroveManager contract had quite a few code style
issues.

Recommendation
Therefore, it is recommended to fix the issues like naming convention, indentation, and code layout
issues in a smart contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

10

Contract Name: StabilityPool

High severity issues
No issues found

Medium severity issues

1. Contract includes functions that perform Multiplication on the result of Division.

Explanation
As per the automated test results of StabilityPool contract, the functions
_computeLQTYPerUnitStaked & _computeRewardsPerUnitStaked perform multiplication on the
result of division.

Integer Divisions in Solidity might truncate. Moreover, this performing division before multiplication
might lead to loss of precision.

The functions with the specific line numbers are mentioned below:
● _computeLQTYPerUnitStaked at 525-526
● _computeRewardsPerUnitStaked at 596-597

Automated Test Results for the above-mentioned functions

Recommendation
Solidity doesn’t encourage arithmetic operations that involve division before multiplication.
Therefore the above-mentioned functions should be checked once and redesigned if they do not lead to
expected results.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

11

Low severity issues

1. Contract’s WETH balance is not checked before initiating a transfer
Line no - 899-909

Explanation
The _sendEthGainToDepositor function is responsible for transferring a particular amount of WETH to
the caller.
This internal function is used in some crucial functions like provideToSP() or withdrawFromSP().

However, the weth transfer in this function is executed without considering whether or not the contract
has an adequate amount of WETH in the first place.

This validation might be quite imperative in scenarios when the WETH balance in the contract is not
enough to execute this transfer.

Recommendation
It would be quite effective to include a validation that ensures that it has the adequate amount of WETH
to complete a transfer.
Moreover, including this validation will also help users to get a clear understanding behind a failed
transfer in case of the above-mentioned scenario.

2. Return Value of an External Call is not used Effectively
Line no - 908, 919, 1082

Explanation
The external calls made in the above-mentioned lines do return a boolean value that indicates whether
or not the external call made was successful.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

12

These boolean return values can be used in the function as a check to ensure that the further execution
of the function is only allowed if the external is successfully made.

However, the StabilityPool contract never uses these return values to ensure the adequate execution
of external calls.

Recommendation
Effective use of all the return values from external calls must be ensured within the contract.

Informational

1. Coding Style Issues in StabilityPool

Explanation
Code readability of a smart contract is largely influenced by the coding style issues and in some
specific scenarios may lead to bugs in the future.

During the automated testing, it was found that the contract had quite a few code style issues.

Recommendation:
It's recommended to fix the issues like naming convention, indentation, and code layout issues in a
smart contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

13

Contract Name: ActivePool

High severity issues
No issues found

Medium severity issues

1. Violation of Check_Effects_Interaction Pattern in the Withdraw function
Line no - 149-155

Explanation
The fallback function(receiveETH) in the ActivePool contract updates state variables after the
external call is being made and therefore violates the Check Effects Interaction Pattern.

An external call within a function technically shifts the control flow of the contract to another contract for
a particular period of time.
Therefore, as per the Solidity Guidelines, any modification of the state variables in the base contract
must be performed before executing the external call.

Recommendation
Check Effects Interaction Pattern must be followed while implementing external calls in a function.

2. Unchecked WETH Transfers found in Contract
Line no: 97, 151

Explanation
The external calls made in the above-mentioned lines do return a boolean value that indicates whether
or not the external call made was successful.

These boolean return values can be used in the function as a check to ensure that the further execution
of the function is only allowed if the external is successfully made.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

14

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html#:~:text=To%20implement%20the%20Check%20Effects,vulnerability%2C%20we%20can%20act%20accordingly.
https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html#:~:text=To%20implement%20the%20Check%20Effects,vulnerability%2C%20we%20can%20act%20accordingly.

However, the ActivePool contract never uses these return values throughout the contract, to validate if
transfers were successful.

Recommendation
The return values should be used effectively in the function.

Low severity issues

No issues found

Informational

1. Coding Style Issues in ActivePool Contract

Explanation
Code readability of a smart contract is largely influenced by the Coding Style issues and in some
specific scenarios may lead to bugs in the future.

During the automated testing, it was found that the ActivePool contract had some code style issues.

Recommendation
It’s recommended to fix the issues like naming convention, indentation, and code layout issues in a
smart contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

15

Contract Name: BorrowerOperations

High severity issues

No issues found

Medium severity issues

1. Redundant assert validation in setAddresses function
Line no: 130

Explanation
During the manual code review it was found that the setAddresses function in the BorrowerOperations
contract includes an assert validation to ensure that the state variable MIN_NET_DEBT is greater than
Zero whenever the function is called.

However, no significance for this validation was found as the MIN_NET_DEBT is not an argument
passed to the function but a state variable that is already initialized with a value greater than Zero in the
LiquityBase contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

16

MIN_NET_DEBT state variable in LiquityBase Contract

Recommendation
If the above-mentioned function design is not an intended one, it should be modified so that redundant
validations are removed and gas usage is optimized.

Low severity issues

1. _activePoolAddColl function ignores the Return value from external call
Line no: 584

Explanation
The activePoolAddColl function doesn’t take into consideration the return value from weth transfers.

These return values could be effectively used to ensure that the external calls made within the function
body were successful.

Recommendation
Return values shouldn’t be ignored and must be used effectively.

2. BorrowerOperations contract includes unused Internal Functions
Line no: 521-525, 627-632

Explanation
During the manual code review of the BorrowerOperations contract, it was found that it includes some
internal functions that are never used throughout the contract.

Moreover, since these functions have been assigned an internal visibility, they cannot be accessed
from outside the contracts and can only be called from within the contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

17

Now, since these functions are not being called from within the contract, they depict no significant use
case and unnecessarily consume the contract's space.

Following functions are not being used in the contract:
1. _requireCallerIsBorrower

2. _getUSDValue

Recommendation
Functions with no significant use should be removed from the contract.

Informational

1. Coding Style Issues in BorrowerOperations contract

Explanation
Code readability of a smart contract is largely influenced by the Coding Style issues and in some
specific scenarios may lead to bugs in the future.

During the automated testing, it was found that the contract had quite a few code style issues.

Recommendation
Therefore, it is recommended to fix the issues like naming convention, indentation, and code layout
issues in a smart contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

18

Fuzz Testing
1. StabilityPool.sol: -

a. Terminal Output
[With use of : “ -g -r 0 -d 1200 ”]

● Excel Sheet of States for the Output of Fuzz Testing
[With use of : “ -g -r 1 -d 1200 ”]

https://drive.google.com/file/d/1It-HVbQh4D2rsNRvEfPmUTi-QRwQd6QI/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

19

https://drive.google.com/file/d/1It-HVbQh4D2rsNRvEfPmUTi-QRwQd6QI/view?usp=sharing

2. ActivePool.sol: -

a. Terminal Output
[With use of : “ -g -r 0 -d 360 ”]

● Excel Sheet of States for the Output of Fuzz Testing
[With use of : “ -g -r 1 -d 360 ”]

https://drive.google.com/file/d/1oZ9wBxhxgp5OUanZr9jXTDvKV93z26WX/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

20

https://drive.google.com/file/d/1oZ9wBxhxgp5OUanZr9jXTDvKV93z26WX/view?usp=sharing

3. BorrowerOpersations.sol: -

a. Terminal Output
[With use of : “ -g -r 0 -d 1200 ”]

● Excel Sheet of States for the Output of Fuzz Testing
[With use of : “ -g -r 1 -d 1200 ”]

https://drive.google.com/file/d/1cbWQeMviNA1XBzmhG1WELTakzT_Kxt_Y/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

21

https://drive.google.com/file/d/1cbWQeMviNA1XBzmhG1WELTakzT_Kxt_Y/view?usp=sharing

Automated Audit Result

1. TroveManager

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

22

2. StabilityPool

3. ActivePool

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

23

4. BorrowerOperations

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

24

Concluding Remarks
While conducting the audits of MahaDAO smart contracts(ARTH Loans), it was observed that the contracts
contain High, Medium and Low severity issues along with a few areas of recommendations.

Our auditors suggest that High, Medium and Low severity issues should be resolved by MahaDAO developers.
The recommendations given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the MahaDAO platform or its product nor this audit is investment advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

25

