
Retreeb

Smart Contract Audit Report

November 12, 2021

Introduction 3
About Retreeb 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level References 5
High Severity Issues 6
Medium severity issues 8
Low severity issues 9

Recommendations/Informational 9

Automated Audit Result 10

Unit Test 11

Fuzz Testing 15
Vulnerability Checks 17

Concluding Remarks 18

Disclaimer 18

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

2

Introduction

1. About Retreeb
Within a rapidly changing sector, Retreeb presents a new means of payment, simple, practical,
economical, which allows it to comply with the universal values such as ethics, sharing and solidarity. It
targets all persons who are part of a solidarity and sustainable approach. In consideration of their
adoption of the service, Retreeb commits to its users to pay 33% of the transaction fees collected by
Retreeb to the funding of social and environmental projects. With this business model, the technical
infrastructure, the redistribution of transaction fees, and the monitoring of projects, they opt for an
unprecedented level of transparency in a particularly opaque sector. Concerned about environmental
issues, their technological choices are determined by a desire to reduce our carbon footprint to its strict
minimum. Finally, they take a new approach to payment by placing corporate social and environmental
responsibility (CSR) at the heart of their ambitions.

Visit https://retreeb.io/ to know more about.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain space. The team
has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and have a
great understanding of DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 105+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-up with a detailed analysis of the system ensuring security
and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The Retreeb team has provided the following doc for the purpose of audit:

1. https://retreeb.io/assets/retreeb-white-paper.pdf
2. Short description of the intended behaviour

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

3

https://retreeb.io/
http://immunebytes.com/
https://retreeb.io/assets/retreeb-white-paper.pdf

Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any potential
issues like Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable
Shadowing, Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and
others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs and

vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: Retreeb
● Contracts Names: StakingPlatform, TesterStakingPlatform, Token.sol
● Languages: Solidity(Smart contract), Typescript (Unit Testing)
● Github commit hash for audit: 30471f1fe81580d56cbc2f3189e64d583cd78a85
● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,

Slither, SmartCheck, SFuzz

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

4

https://github.com/RetreebInc/staking-platform

Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart

contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include:
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References
Every issue in this report was assigned a severity level from the following:

Admin/Owner Privileges can be misused either intentionally or unintentionally.

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some

point in the future.

Issues High Medium Low

Open 2 1 1

Closed - - -

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

5

High Severity Issues

1. withdrawAmount() function might fail in some cases.

Explanation:
The current function design of the withdrawAmount() function does not represent a very strong logic.
The function calls the deposit() function within itself to re-deposit the amount of token that wasn’t
supposed to be withdrawn back to the pool.

Now, this leads to a very unexpected scenario because of the way the deposit() function is designed
currently.

The deposit() function includes a strict check at line 165 to ensure that the amount passed is greater
than 1e18.

However, when the deposit function is called from the withdrawAmount(), then the amount argument
passed for calling deposit() function might not be equal to or greater than 1e18, as it entirely depends
on the amount being withdrawn by the user.

In such cases, the require statement at Line 165 of the deposit() function might revert back thus
preventing the whole withdrawal operation.

Recommendation:
1. It is strongly recommended to modify the withdrawAmount() function to handle each and every

scenario that might occur during the execution of the smart contract.

2. It's also recommended to add proper test cases covering all conditions for this function.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

6

2. Missing imperative validation in withdrawAmount() function

Explanation:
As per the NatSpec annotations of the withdrawAmount() function in the contract, the function should
only be called when the block.timestamp is greater than or equal to the end period.

However, no such validations were found in the function.

Moreover, the only check similar to it is available in the withdraw() function at lines 187 to 190 which
checks the current time against the lockupPeriod instead of endPeriod.

It seems the withdrawAmount() function somehow assumes that the endPeriod and lockPeriod are
always similar values while it might not be true.

As a result, there can be different types of pools like mid or quick pools, where the values for lock
period and end period of the stakes are not the same.

Recommendation:
1. Adequate validations must be implemented in the functions.

2. Additionally, It’s imperative clearly document the intended behavior of the function. The NatSpec
documentation of the withdraw() function also doesn’t resemble the function design. The
documentations should either be modified or the functions should be redesigned to match the
expected behavior.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

7

Medium severity issues

1. withdrawAmount() function includes inadequate logic

Explanation:
The withdrawAmount() function of the protocol doesn’t represent a very strong logic as per the current
architecture.

The deposit() function that is called at the end of this function will require additional approval of tokens
from the user in specific cases.

For instance, consider the following scenario:
A. User approves 1000 tokens staking contract
B. Calls deposit() function for 1000 tokens.
C. Current approval of the User for Staking contract becomes ZER0
D. User then decides to call the withdrawAmount() function for only 200 Tokens.
E. This function actually transfers back all the Staked amount back to the user, i.e., 1000 Tokens.
F. Then this function calls the deposit() function for re-depositing the remaining unwithdrawn

tokens, i.e., 800 Tokens.

However, for the deposit() to work effectively, the user needs to first approve 800 tokens to the staking
contract again so that the staking contract uses the transferFrom() function and transfers the tokens
from the user to the contract. Otherwise, the transferFrom() function shall revert thus causing this
whole operation to revert back.

Hence, due to the current design of the withdrawAmount() function, users might have to approve
tokens even at the time of withdrawing tokens which is not really a very standard smart contract
practice.

Recommendation:
It is recommended to redesign this function and add effective test cases for the same.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

8

Low severity issues

1. StartStaking event should emit out all imperative arithmetic state variables
Line no - 62

Explanation:
The StartStaking event emits out the startPeriod as well as the endPeriod state variables, while it
doesn’t emit the lockPeriod value.

It’s considered standard practice to emit all crucial arithmetic state variables when they are initialized or
modified.

Recommendation:
It is recommended to emit out events whenever crucial state variables are modified.

Recommendations/Informational
1. Input validations and checkpoints can be improved in the withdrawAmount() function

Explanation:
As per the current architecture of the protocol, the withdrawAmount() function doesn’t impose an
adequate validation on the amount argument being passed to the function.

Moreover, it doesn’t include an imperative checkpoint that ensures that only valid stakers, with a
staked value greater than zero, call this function. This will result in a badly handled event as the users
might get unclear error messages if the function reverts due to a subtraction error.

Recommendation:
It's imperative to include all necessary input validations and strict conditions within a function.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

9

Automated Audit Result
1. StakingPlatform.sol

2. TesterStakingPlatform.sol

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

10

Unit Test
All unit tests provided by the team are passing without issues.

1. Staking Platform for DEEP POOL

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

11

2. Staking Platform for MID POOL

3. Staking Platform for QUICK POOL

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

12

4. Pool Test

5. Withdraw Tests

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

13

6. Pool Restake Tests

7. Initial Tests

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

14

Fuzz Testing
1. Token.sol: -

a. Terminal Output
[With the use of: “ -g -r 0 -d 1800 ”]

● Excel Sheet of States for the Output of Fuzz Testing

[With the use of: “ -g -r 1 -d 1800 ”]

https://drive.google.com/file/d/1YuRtUaj7uI8yrAAqLsNmiwYC8UBzfcOo/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

15

https://drive.google.com/file/d/1YuRtUaj7uI8yrAAqLsNmiwYC8UBzfcOo/view?usp=sharing

2. StakingPlatform.sol: -

a. Terminal Output
[With the use of: “ -g -r 0 -d 1800 ”]

● Excel Sheet of States for the Output of Fuzz Testing

[With the use of: “ -g -r 1 -d 1800 ”]

https://drive.google.com/file/d/1YuRtUaj7uI8yrAAqLsNmiwYC8UBzfcOo/view?usp=sharing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

16

https://drive.google.com/file/d/1YuRtUaj7uI8yrAAqLsNmiwYC8UBzfcOo/view?usp=sharing

Vulnerability Checks

TYPES ORACLES WHEN A VULNERABILITY IS
DETECTED

WHY IT IS
VULNERABLE

Results

Error Gasless Send Function sends or transfer is called and
receiver has a costly fallback function

RunOufOfGasexception PASSED

Error Exception
Disorder

There is an exception in the call chain
but the. These functions hide exceptions

Root of the call chain
does not throw
exception

PASSED

Error Timestamp
Dependency

The test case evaluates a condition
based on timestamp and then sends
ether

Miners control the
values of timestamp

PASSED

Error Block Number
Dependency

The test case evaluates a condition
based on block number and then sends
ether

Miners control the
values of block number.

PASSED

Error Danger
Delegate Call

delegatecall is executed via msg.data. The attacker can call
any function.

PASSED

Error Reentrancy A contract function is called via fallback
function from another contract and
sends ether.

Refer to the DAO
vulnerability

PASSED

Error Integer
Overflow/Underf
low

If b >0 and a + b < a or b > 0 and a − b >
b or ···

Arithmetic error PASSED

Error Integer
Overflow/Underf
low

If b >0 and a + b < a or b > 0 and a − b >
b or ···

Arithmetic error PASSED

Warning Freezing Ether After all test case, nosend()or transfer()
function is executed

The contract is a
blackhole for ether

PASSED

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

17

Concluding Remarks
While conducting the audits of the Retreeb smart contracts, it was observed that the contracts contained High,
Medium and Low severity issues.

Our auditors suggest that High, Medium and Low severity issues should be resolved by the developers. The
recommendations given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the Retreeb platform or its product nor this audit is investment advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

18

