
WAM

SMART CONTRACT AUDIT
FINAL REPORT

F e b r u a r y 2 3 , 2 0 2 2

T
A
B
L
E

O
F

C
O
N
T
E
N
T
S

Introduction
 About WAM

 About ImmuneBytes

Documentation Details
Audit Process & Methodology
Audit Details
Audit Goals
Security Level Reference
Contract Name: Staking.sol & Wam.sol
 High Severity Issues

 Medium severity issues

 Low severity issues

 Recommendations/Informational

Automated Audit Result
Unit Test
Concluding Remarks
Disclaimer

2
2

2

2
3
3
4
4
5
5

5

7

10

11
12
13
13

TOC

1

2

Introduction
1. About WAM

WAM is a platform where people compete in tournaments to win crypto rewards in SWAM and
NFTs. You can play using your mobile phone from Chrome, or Safari or you can download
WAM.app from Google Play and Apple AppStore. Users on WAM can own games and
tournaments to generate recurring revenue, developers can publish games and sell NFTs and
marketers can promote tournaments to earn SWAM from them.

The concept of making money by playing hyper casual games based on skill is new in the
gaming industry and WAM is the first platform in the world that let you do this. All you need in
order to play on the WAM platform is a few minutes of your time and the desire to be the best.
You can participate in tournaments all around the world, wherever you have internet access.
Players don't have to be connected at the same time, and that is very good for players
because each can compete whenever they find the time to do so.

Visit https://wam.app/ to know more about it.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain space.
The team has hands-on experience in conducting smart contract audits, penetration testing,
and security consulting. ImmuneBytes’s security auditors have worked on various A-league
projects and have a great understanding of DeFi projects like AAVE, Compound, 0x Protocol,
Uniswap, dydx.

The team has been able to secure 125+ blockchain projects by providing security services on
different frameworks. ImmuneBytes team helps start-ups with a detailed analysis of the
system ensuring security and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

1. https://whitepaper.wam.app/

The WAM team has provided the following doc for the purpose of audit:

Documentation Details

3

ImmuneBytes team has performed thorough testing of the project starting with analyzing the code
design patterns in which we reviewed the smart contract architecture to ensure it is structured and
safe use of third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any
potential issues like Signature Replay Attacks, Unchecked External Calls, External Contract
Referencing, Variable Shadowing, Race conditions, Transaction-ordering dependence, timestamp
dependence, DoS attacks, and others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions
work as intended. In Automated Testing, we tested the Smart Contract with our in-house developed
tools to identify vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -

Testing the functionality of the Smart Contract to determine proper logic has been followed
throughout.

Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.

Deploying the code on testnet using multiple clients to run live tests.

Analyzing failure preparations to check how the Smart Contract performs in case of bugs and
vulnerabilities.

Checking whether all the libraries used in the code are on the latest version.

Analyzing the security of the on-chain data.

1.

2.

3.

4.

5.

6.

Audit Process & Methodology

Audit Details
Project Name: WAM

Contracts Name: Staking.sol, Wam.sol

Languages: Solidity(Smart contract), Typescript (Unit Testing)

Audit Scope: https://github.com/Digitapeu/wam-staking-contract/

Github commits for the initial audit: bbc89ab521b789f27dcd2dbbaa21fac58730ee9a

Github commits for the final audit: 036250f542abfc59fd6f92483380749272d71f87

Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,
Slither, SmartCheck

4

Security: Identifying security-related issues within each contract and within the system of
contracts.

Sound Architecture: Evaluation of the architecture of this system through the lens of
established smart contract best practices and general software best practices.

Code Correctness and Quality: A full review of the contract source code. The primary areas of
focus include

1.

2.

3.

Correctness
Readability
Sections of code with high complexity
Quantity and quality of test coverage

a.
b.
c.
d.

The focus of the audit was to verify that the smart contract system is secure, resilient, and working
according to its specifications. The audit activities can be grouped into the following three
categories:

Audit Goals

Security Level Reference
Every issue in this report were assigned a severity level from the following:

Admin/Owner Privileges can be misused either intentionally or unintentionally.
High severity issues will bring problems and should be fixed.
Medium severity issues could potentially bring problems and should eventually be fixed.
Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Issues

Open

Closed

High

-

-

Medium

-

2

Low

-

5

5

OPERATOR_ROLE is initialized but never assigned to any specific address
Line no - 7

Explanation:
The AccessLevel contract uses AccessControl to assign specific roles in the contract to
particular addresses. It initializes the Operator Role in the contract, at Line 7 to specify a new
type of access level, particularly for the operators of the contract.

However, during the manual review, it was found that this role has not to be set up or assigned
to any specific address and the Operator Role is never used throughout the contract.

This will lead to a severe issue if any particular function, in the further upgrades, is only
supposed to be accessed by operator roles while the operator role is never really assigned to
any address.

Recommendation:
If the current contract design doesn’t involve any significant use for the operator role, it can be
removed from the contract. Otherwise, a specific address can be assigned an operator role in
order to have the intended behavior of different access control levels in the contract.

Amended (February 23rd, 2022): The issue was fixed by the WAM team and is no longer
present in commit 036250f542abfc59fd6f92483380749272d71f87

1.

Contract Name: Staking.sol & Wam.sol
High Severity Issues
No issues were found.

Medium severity issues

6

Multiplication is being performed on the result of Division
Line no - 183-184, 187-188, 212-213, 246-247

Explanation:
During the automated testing of the Staking contract, it was found that some of the functions
in the contract are performing multiplication on the result of a Division.
Integer Divisions in Solidity might truncate. Moreover, this performing division before
multiplication might lead to a loss of precision.

While this might not lead to any severe issue, it is recommended to ensure adequate test
cases have been included for this specific section to ensure it doesn’t affect the intended
behavior of the contracts.

The following functions involve division before multiplication in the mentioned lines:

Recommendation:
Solidity doesn’t encourage arithmetic operations that involve division before multiplication.
Therefore the above-mentioned function should be checked once and redesigned if they do
not lead to expected results.

Amended (February 23rd, 2022): The issue was fixed by the WAM team and is no longer
present in commit 036250f542abfc59fd6f92483380749272d71f87

2.

getPossibleRewardsForUserStake()

unstake(uint256)

unstake(uint256,uint256)

7

getAllAddressStakes()

getLostPercentageNowForUserStake()

getLostAmountNowForUserStake()

getPossibleRewardsForUserStake()

External Visibility should be preferred

Explanation:
Functions that are never called throughout the contract should be marked as external
visibility instead of public visibility.
This will effectively result in Gas Optimization as well.

Therefore, the following function must be marked as external within the contract:

1.

No Events emitted after imperative State Variable modification
Line no -103-106

Explanation:
Functions that update an imperative arithmetic state variable contract should emit an event
after the state modification.
The setMaxLoss() function modifies a crucial arithmetic parameter, i.e., maxLoss in the Staking
contract but doesn’t emit any event:

Since there is no event emitted on updating these variables, it might be difficult to track it
off-chain.

Recommendation:
An event should be fired after changing crucial arithmetic state variables.

Amended (February 23rd, 2022): The issue was fixed by the WAM team and is no longer
present in commit 036250f542abfc59fd6f92483380749272d71f87

2.

Low severity issues

Recommendation:
If the PUBLIC visibility of the above-mentioned functions is not intended, then the EXTERNAL
Visibility keyword should be preferred.

Amended (February 23rd, 2022): The issue was fixed by the WAM team and is no longer
present in commit 036250f542abfc59fd6f92483380749272d71f87

8

Unused State variable found in the contract
Line no: 26

Explanation:
During the manual code review of the contract, it was found that the stakingId state variable
is never used throughout the contract.

As per the current design of the contract, the StakingInfo struct already has a specific
member named id, that can be used to track a particular staking id for a given address.
Therefore, the stakingId doesn’t seem to have adequate significance.

Recommendation:
It is recommended to remove any unused state variable in the contract.

Amended (February 23rd, 2022): The issue was fixed by the WAM team and is no longer
present in commit 036250f542abfc59fd6f92483380749272d71f87

3.

Absence of Zero Address Validation
Line no- 44-50, 112-114

Explanation:
The Staking contract includes a few functions that update some of the significant addresses
in the contract like stakingTokensAddress, communityAddress etc.

However, during the automated testing of the contact it was found that no Zero Address
Validation is implemented on the following functions while updating the address state
variables of the contract:

Recommendation:
A require statement should be included in such functions to ensure no zero address is passed
in the arguments.

Amended (February 23rd, 2022): The issue was fixed by the WAM team and is no longer
present in commit 036250f542abfc59fd6f92483380749272d71f87

4.

initialize() setCommunityAddress()

9

Event emissions can be improved in the contract

Explanation:
As per the current design, the events Stake & Unstake in the contract do not include the
amount parameter. This leads to a scenario where the amount of tokens being staked or
unstaked is never emitted out, despite the fact that this could be imperative arithmetic data.

 Moreover, considering the unstaking mechanism of the contract, it’s possible for a user
to unstake only a portion of his staked token. In such a scenario it's important to emit out the
specific amount of tokens being unstaked.

Recommendation:
The events being emitted in the contract can be improved.

Amended (February 23rd, 2022): The issue was fixed by the WAM team and is no longer
present in commit 036250f542abfc59fd6f92483380749272d71f87

5.

10

getLostPercentageNowForUserStake()

getLostAmountNowForUserStake()

getPossibleRewardsForUserStake()

unstake()

Code duplication found during review

Explanation:
During the code review of the Staking contract, it was found that at a few instances, similar
code logic was being repeated on multiple function calls which could have been abstracted
out as a separate function and be reused.

For instance, the calculation of rewardPercentage, rewardForStaking, lossPercentage, and
tokenLost code duplication was found in the following function:

Recommendation:
Duplication of code should be avoided as it not just reduces code readability but also badly
affects the gas optimization part aspect of the contract.

Amended (February 23rd 2022): The issue was fixed by the WAM team and is no longer present
in commit 036250f542abfc59fd6f92483380749272d71f87

1.

Absence of Pausable functionalities in the contract.

Explanation:
During the code review it was found that the contract doesn’t include any pausable feature
that allows the owner to pause the contract in extreme conditions.

Considering the fact that the contract has some publically accessible functions, including
pausable features would ensure an additional layer of security for the contract.

Recommendation:
Unless the current design is intended, Pausable functionalities can be included in the contract
as well.

2.

Recommendations/Informational

11

Staking:1.

Automated Audit Result

Wam2.

12

Unit Test

While conducting the audits of the WAM smart contracts, it was observed that the contracts contain
Medium and Low severity issues.

Our auditors suggest that Medium and Low severity issues should be resolved by the developers. The
recommendations given will improve the operations of the smart contract.

Note: The WAM team has refactored the code based on the auditor's recommendation.

Concluding Remarks

ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart
contract. Securing smart contracts is a multistep process, therefore running a bug bounty program
as a complement to this audit is strongly recommended.

Our team does not endorse the WAM platform or its product nor this audit is investment advice.
Notes:

Disclaimer

Please make sure contracts deployed on the mainnet are the ones audited.

Check for the code refactor by the team on critical issues.

