
SMART CONTRACT AUDIT
FINAL REPORT

F e b r u a r y 1 4 , 2 0 2 2

T
A
B
L
E

O
F

C
O
N
T
E
N
T
S

Introduction
 About The YellowHeart

 About ImmuneBytes

Documentation Details
Audit Process & Methodology
Audit Details
Audit Goals
Security Level Reference
Contract Name: HeartToken
 High Severity Issues

 Medium severity issues

 Low severity issues

 Recommendations/Informational

Automated Audit Result
Concluding Remarks
Disclaimer

2
2

2

2
3
3
4
4
5
5

5

5

6

7
8
8

TOC

1

2

Introduction
1. About The YellowHeart

YellowHeart’s online marketplace, combined with its mobile and desktop browser
applications, make it easy for any fan to buy and sell NFT tickets and collectibles. The
credit-card enabled platform is built for everyone, no crypto experience required; it pairs ease
of use with the robust performance required by top tier venues.

Visit https://yh.io/ to know more about.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain space.
The team has hands-on experience in conducting smart contract audits, penetration testing,
and security consulting. ImmuneBytes’s security auditors have worked on various A-league
projects and have a great understanding of DeFi projects like AAVE, Compound, 0x Protocol,
Uniswap, dydx.

The team has been able to secure 125+ blockchain projects by providing security services on
different frameworks. ImmuneBytes team helps start-ups with a detailed analysis of the
system ensuring security and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

1. https://docs.google.com/document/d/1J9rVVmXPKLDiAEAGb7tw1m0JSf3YnjPtNVGkOGM4RWk/edit

The Winkies team has provided the following doc for the purpose of audit:

Documentation Details

3

ImmuneBytes team has performed thorough testing of the project starting with analyzing the code
design patterns in which we reviewed the smart contract architecture to ensure it is structured and
safe use of third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any
potential issues like Signature Replay Attacks, Unchecked External Calls, External Contract
Referencing, Variable Shadowing, Race conditions, Transaction-ordering dependence, timestamp
dependence, DoS attacks, and others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions
work as intended. In Automated Testing, we tested the Smart Contract with our in-house developed
tools to identify vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -

Testing the functionality of the Smart Contract to determine proper logic has been followed
throughout.

Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.

Deploying the code on testnet using multiple clients to run live tests.

Analyzing failure preparations to check how the Smart Contract performs in case of bugs and
vulnerabilities.

Checking whether all the libraries used in the code are on the latest version.

Analyzing the security of the on-chain data.

1.

2.

3.

4.

5.

6.

Audit Process & Methodology

Audit Details
Project Name: YellowHeart

Contracts Name: HeartToken

Languages: Solidity(Smart contract)

Contract Link for the audit:
https://goerli.etherscan.io/address/0x09Df9984CfFF401F2A0a9Ff13DD254490fA0c25c#code

Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,
Slither, SmartCheck

4

Security: Identifying security-related issues within each contract and within the system of
contracts.

Sound Architecture: Evaluation of the architecture of this system through the lens of
established smart contract best practices and general software best practices.

Code Correctness and Quality: A full review of the contract source code. The primary areas of
focus include

1.

2.

3.

Correctness
Readability
Sections of code with high complexity
Quantity and quality of test coverage

a.
b.
c.
d.

The focus of the audit was to verify that the smart contract system is secure, resilient, and working
according to its specifications. The audit activities can be grouped into the following three
categories:

Audit Goals

Security Level Reference
Every issue in this report were assigned a severity level from the following:

Admin/Owner Privileges can be misused either intentionally or unintentionally.
High severity issues will bring problems and should be fixed.
Medium severity issues could potentially bring problems and should eventually be fixed.
Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Issues

Open

Closed

High

-

-

Medium

-

-

Low

1

-

5

High Severity Issues

Contract Name: HeartToken

Medium severity issues
No issues were found.

No issues were found.

Lack of adequate input validations in the minter configuration functions

Explanation: 3460-3470, 3477-3482
During the code review, it was found that the configureMinter and removeMinter function in
the BaseToken contract doesn’t include adequate input validation on the arguments being
passed.

1.

For instance, before initiating the actual function execution the configureMinter function
doesn’t validate if the minter address being passed as an argument is already marked as true.

Moreover, the function also doesn’t involve any check to ensure the right thresholds of the
minterAllowedAmount argument that is being passed to the function. It is considered a better
practice to pre-define the specific highest and lowest thresholds for an arithmetic value
update.

Low severity issues

Recommendation:
Unless the current contract design is intended, it is recommended to include adequate
require statements in the above-mentioned functions to ensure the entry of only valid values
as arguments to the function.

6

initialize()

External Visibility should be preferred

Explanation:
Functions that are never called throughout the contract should be marked as external
visibility instead of public visibility.

This will effectively result in Gas Optimization as well.

Therefore, the following function must be marked as external within the HeartToken contract:

1.

Coding Style Issues in the Contract

Explanation:
Code readability of a Smart Contract is largely influenced by the Coding Style issues and in
some specific scenarios may lead to bugs in the future.

2.

During the automated testing, it was found that the BaseToken contract had quite a few code
style issues.

Recommendation:
If the PUBLIC visibility of the above-mentioned functions is not intended, then the EXTERNAL
Visibility keyword should be preferred.

Recommendation:
Therefore, it is recommended to fix the issues like naming convention, indentation, and code
layout issues in a smart contract.

Recommendations/Informational

7

Automated Audit Result

While conducting the audits of the YellowHeart smart contract, it was observed that the contracts
contain only Low severity issues.

Our auditors suggest that Low severity issues should be resolved by the developers. The
recommendations given will improve the operations of the smart contract.

Concluding Remarks

ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart
contract. Securing smart contracts is a multistep process, therefore running a bug bounty program
as a complement to this audit is strongly recommended.

Our team does not endorse the YellowHeart platform or its product nor this audit is investment
advice. Notes:

Disclaimer

Please make sure contracts deployed on the mainnet are the ones audited.

Check for the code refactor by the team on critical issues.

