

Ethernity Chain

Smart Contract Audit Report

March 8, 2021

Introduction 3

About Ethernity Chain 3
About ImmuneBytes 3

Documentation Details 4

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level References 5
Low severity issues 6

Unit Test 7

Coverage Report 7

Concluding Remarks 7

Disclaimer 7

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

2

Introduction

1. About Ethernity Chain
Ethernity is a Decentralized Application (DAPP) Platform that allows artists to create and
auction artwork inspired and backed by celebrities for charity.
The concept behind Ethernity is mutually beneficial for all actors involved:

1. Public Figure:​ by making it easier to create, store, back, and sell the artworks.
2. Charity: by getting 100% of the first sale proceeds (minus exchange fees). And the

auction format maximizes the artwork value (increasing the charity’s benefits) without the
need of a promoter, leveraging the ​emotions that a bidding war involves​.

3. Collector: by providing them with an easy, democratized platform to bid on these pieces
of authentic digital art where they can thereafter take bids and auction their acquired
artwork.

With ERN tokens collectors can acquire Ethernity's exclusive authenticated NFTs as
payment method and also yield farming rewards. Part of the sales proceeds go to
charity.

Visit ​https://ethernity.io/​ to know more.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain
space. The team has hands-on experience in conducting smart contract audits,
penetration testing, and security consulting. ImmuneBytes’s security auditors have
worked on various A-league projects and have a great understanding of DeFi projects
like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 15+ blockchain projects by providing security services
on different frameworks. ImmuneBytes team helps start-up with a detailed analysis of the
system ensuring security and managing the overall project.

Visit ​http://immunebytes.com/​ to know more about the services.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

3

https://blogs.cornell.edu/info2040/2015/10/15/auction-psychology-emotions-behind-bidding/
https://ethernity.io/
http://immunebytes.com/

Documentation Details
The Ethernity team has provided documentation for the purpose of conducting the audit. The
documents are:

1. Ethernity White Paper v0.3

Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the
code design patterns in which we reviewed the smart contract architecture to ensure it is
structured and safe use of third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find
any potential issues like Signature Replay Attacks, Unchecked External Calls, External Contract
Referencing, Variable Shadowing, Race conditions, Transaction-ordering dependence,
timestamp dependence, DoS attacks, and others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the
functions work as intended. In Automated Testing, we tested the Smart Contract with our
in-house developed tools to identify vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -

1. Testing the functionality of the Smart Contract to determine proper logic has been
followed throughout.

2. Analyzing the complexity of the code by thorough, manual review of the code,
line-by-line.

3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs

and vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: Ethernity
● Languages: Solidity(Smart contract)
● Code for audit (Mainnet): ​0xBBc2AE13b23d715c30720F079fcd9B4a74093505
● Code for audit (Kovan): ​0x3634528B0D2BA04E7e678e9b6812EFd414aFC8c8

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

4

https://etherscan.io/address/0xBBc2AE13b23d715c30720F079fcd9B4a74093505#code
https://kovan.etherscan.io/address/0x3634528b0d2ba04e7e678e9b6812efd414afc8c8#code

Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and
working according to its specifications. The audit activities can be grouped into the following
three categories:

1. Security: Identifying security-related issues within each contract and within the system of
contracts.

2. Sound Architecture: Evaluation of the architecture of this system through the lens of
established smart contract best practices and general software best practices.

3. Code Correctness and Quality: A full review of the contract source code. The primary
areas of focus include:

a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References
Every issue in this report was assigned a severity level from the following:

High severity issues​ will bring problems and should be fixed.

Medium severity issues​ could potentially bring problems and should eventually be fixed.

Low severity issues​ are minor details and warnings that can remain unfixed but would be

better fixed at some point in the future.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

5

Issues High Medium Low

Open - - 2

Closed - - 2

Low severity issues

1. Redundant _decimals variable.
In ​ERNToken smart contract, a ​uint ​_decimals variable is used to store the token
decimals value. However, a similar ​uint8 ​_decimals variable is also used in
OpenZeppelin’s ​ERC20 contract. The value of both variables is 18. It is never
recommended to use multiple variables to perform the same task.

Recommendation​:
Consider removing the ​uint _decimals​ variable from the ​ERNToken​ contract.

2. Use ​_msgSender​() instead of ​msg.sender

Throughout the ​ERNToken contract ​_msgSender​() is used to access the caller’s
address instead of ​msg.sender except for one place, in the ​constructor​() ​Line 608
msg.sender is used. To maintain consistency it is always recommended to use exact
same conventions throughout the contract.

Recommendation​:
Consider replacing ​msg.sender​ with ​_msgSender​() inside the ​constructor​().

3. Different Initial Supply was minted than the one mentioned in the whitepaper.

The ​Whitepaper of Ethernity, ​The $ERN Token section ​(page 9) mentions that an
initial supply of 55 Million $ERN Tokens will be minted while as can be seen on
etherscan an initial supply of 30 Million $ERN Tokens were minted.

Acknowledged(March 8th, 2021): ​The issue is acknowledged by the Ethernity team.
The specification has been changed in the final version of the whitepaper.

4. Missing stake and rewards functions as mentioned in the whitepaper​.
In the ​Whitepaper of Ethernity, ​The Technical Design - Overview section, ​bullet
point #3 (page 10) mentions that “​The $ERN token is an ERC-20 token with stake
functions'' ​and the ​Smart Contracts section ​bullet point #1 mentions that ​“The $ERN
token will be an OpenZeppelin ERC20 based token with stake and rewards functions''​.
However, no such functions are present in the ​ERNToken​ smart contract.

Acknowledged(March 8th, 2021): ​The issue is acknowledged by the Ethernity team.
The specification has been changed in the final version of the whitepaper.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

6

Unit Test
No unit tests were provided by the Ethernity team.

Recommendation​:
Our team suggests that the developers should write more extensive test cases for the contracts.

Coverage Report
Coverage report cannot be generated without unit test cases.

Recommendation​:
We recommend 100% line and branch coverage for unit test cases.

Concluding Remarks
While conducting the audits of the Ethernity smart contract, it was observed that the contracts
contain only Low severity issues.

Resolving the areas is up to Ethernity’s discretion. The recommendations given will improve the
operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart
contract. Securing smart contracts is a multistep process, therefore running a bug bounty
program as a complement to this audit is strongly recommended.

Our team does not endorse the Ethernity platform or its product neither this audit is investment
advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes Pvt Ltd.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement to this audit is strongly recommended.

7

