
PolyTrade

Lender Portal

Smart Contract Audit Report

December 20, 2021

Introduction 3
About PolyTrade 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level References 5
High Severity Issues 6
Medium Severity Issues 6
Low Severity Issues 8

Recommendation / Informational 9
Notes/Important Pointers 10

Unit Tests 11

Test Coverage Report 13

Automated Audit Result 13

Fuzz Testing 14

Concluding Remarks 18

Disclaimer 18

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

2

Introduction

1. About PolyTrade
Polytrade is a decentralized trade finance platform that aims to transform receivables financing. It will
connect buyers, sellers, insurers, and investors for a seamless receivables financing experience and
help users avoid existing market challenges using its platform solutions. Polytrade will provide
real-world borrowers access to low interest and swift financing to free up critical working capital tapped
from crypto lenders.

By onboarding on Polytrade, everybody gains because the platform bridges the gaps in traditional
receivables financing by accessing untapped crypto liquidity. Through Polytrade, we want to boost
business growth where liquidity is not a hindrance.

Visit https://polytrade.finance/ to know more about.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain space. The team
has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and have a
great understanding of DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 105+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-up with a detailed analysis of the system ensuring security
and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The PolyTrade team has provided the following doc for the purpose of audit:

1. https://github.com/polytrade-finance/lender-portal-contracts/tree/dev/docs
2. https://polytrade.finance/whitepaper.pdf
3. https://polytrade.finance/one-pager.pdf

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

3

https://polytrade.finance/
http://immunebytes.com/
https://github.com/polytrade-finance/lender-portal-contracts/tree/dev/docs
https://polytrade.finance/whitepaper.pdf
https://polytrade.finance/one-pager.pdf

Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any potential
issues like Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable
Shadowing, Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and
others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs and

vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: PolyTrade
● Contracts Name: LenderPool.sol
● Languages: Solidity(Smart contract), Typescript (Unit Testing)
● Github commits for initial audit: 75497f0a0371e7b274eb06e1a94eaaba9062aca1
● Github commits for final audit: 461a043e7b6c95f6f2aab71bd00d6f7d708513f5
● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,

Slither, SmartCheck

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

4

https://github.com/polytrade-finance/lender-portal-contracts/tree/dev
https://github.com/polytrade-finance/lender-portal-contracts/tree/fix/security-audit

Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart

contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include:
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References
Every issue in this report was assigned a severity level from the following:

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some

point in the future.

Issues High Medium Low

Open - - -

Closed 1 3 4

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

5

High Severity Issues

1. _swapExactTokens() function is susceptible to Sandwich transaction attack.
The _swapExactTokens() function in the LenderPool contract is intended to swap stablecoin to trade
tokens. However, while performing that trade the function does not make use of the amountOutMin
input variable of swapExactTokensForTokens() function of the Uniswap Router contract.
Due to using 0 as amountOutMin, the withdraw transaction for a lender is susceptible to Sandwich
Attack. In this attack, a user’s trade transaction is both front and back runned by an attacker to gain
profit from the user’s trade.
More details - https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers

Recommendation:
Consider taking amountOutMin as input in the withdraw() function and pass it to Uniswap’s swap
function.

Amended (Dec 20th, 2021): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

Medium Severity Issues

1. withdraw() function works for invalid input values.
The withdraw() function of the LenderPool contract is intended to be used to claim and transfer the
lender’s rewards as well as the principal amount. Since the function is access protected it does not
include input validation checks.
For a valid lender address, any roundId input value can be passed to the function. The function
accepts non-existent as well as already claimed roundId values to be passed to it. The
_lenderRounds mapping always returns a default (0) value for non-existent roundIds.
In the case of invalid inputs, the Round.amountLent value comes out to be 0. As the amountLent
value comes out to be 0, this unintended execution of the function does not cause any loss of funds.
But still, this type of unintended execution should be explicitly prohibited by the LenderPool contract.

Recommendation:
Consider validating input variables for the function. Also, a require statement can be added in the
withdraw function similar to:

require (round.amountLent > 0, “No amount lent”);

Amended (Dec 20th, 2021): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

6

https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers

2. No function is present to pull out extra reward tokens.
It is assumed that the LenderPool contracts always possess a sufficient amount of reward tokens so
that they can be distributed to lenders. We assume that the PolyTrade team will be topping up the
LenderPool contract with reward tokens periodically.

However, there could be a scenario in which after distributing all the lending rewards to all lenders, the
LenderPool contract may still possess some extra reward tokens. In this case, it won’t be easy for the
PolyTrade team to pull out those extra tokens which are still held by the LenderPool contract.

Recommendation:
Consider either implementing logic to pull out extra tokens or only transfer the exact amount of reward
tokens at a time to LenderPool.

Amended (Dec 20th, 2021): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

3. Incorrect use of Pausable contract.
The LenderPool contract inherits the Pausable contract to include the pausability feature. LenderPool
also implements a whenNotPaused modifier to the newRound() function.
However, there is no mechanism present inside the LenderPool contract to pause and unpause the
contract. The internal _pause() and _unpause() functions of the Pausable smart contract have to be
explicitly called by inheriting the LenderPool contract to access the pausability feature.
Also, as the newRound() function is only callable by the owner of the contract, it is unnecessary to
have the pause and unpause feature. Removing the Pausable contract will also reduce the bytecode
size of the LenderPool contract.

Recommendation:
Consider not inheriting the Pausable contract as it is unnecessary.

Amended (Dec 20th, 2021): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

7

Low Severity Issues

1. Repeated ERC20.approve() external calls.
The _claimRewards() function in LenderPool contract performs a stableInstance.approve() call for
router contract with an infinite amount.

function _claimRewards(address lender, uint roundId) private {

Round memory round = _lenderRounds[lender][roundId];

stableInstance.approve(address(router), ~uint(0));

/// ... more code here

}

Since the LenderPool contract approves the router with an infinite (Max uint256) amount, there is no
need to give this approval on every claim transaction. Removing this extra call will result in gas cost
reduction for the claim transaction.

Recommendation:
Consider approving only once in the constructor() of the LenderPool contract.

Amended (Dec 20th, 2021): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

2. mappings can be combined into one struct.
The _amountLent and _roundCount mappings in the LenderPool contract are used to store
lender-specific data. Since both of these are always used together, they can be combined into s struct.
This change will make the contract’s storage more optimized.

Amended (Dec 20th, 2021): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

3. Smaller-sized uint variables can be used.
The uint256 startPeriod and endPeriod variables in the Round struct datatype are intended to store
timestamps. Storing a timestamp does not need a huge storage slot.
Hence these timestamps can be safely stored in a uint32 or a uint64 datatype instead of a uint256
datatype. This change will make the contract’s storage more optimized.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

8

Amended (Dec 20th, 2021): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

4. No function is present to read the _stableAPY variable.
The _stableAPY uint variable in the LenderPool contract is declared as a private variable. So this
variable is not accessible from outside the LenderPool smart contract.
The contract also doesn’t contain any view function to read the _stableAPY value. It will be difficult for
external entities (like frontends) to read the _stableAPY value directly from the contract.

Recommendation:
Consider implementing a function to read the _stableAPY value from the smart contract.

Amended (Dec 20th, 2021): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

Recommendation / Informational
1. No Events emitted after imperative State Variable modification

Line no -57-59

Functions that update an imperative arithmetic state variable contract should emit an event after the
update.
The setMinimumDeposit() function in the contract updates a crucial state variable, i.e.,
minimumDeposit but doesn’t emit any event on its modification.

The absence of event emission for important state variables update also makes it difficult to track them
off-chain as well.

Recommendation:
As per the best practices in smart contract development, an event should be fired after changing crucial
arithmetic state variables.

Amended (Dec 20th, 2021): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

2. _getFinishedRounds() function could be optimized and redesigned effectively

The _getFinishedRounds() function in the contract includes repetitive code as it involves a similar IF
statement at two different instances within the function body.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

9

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

While this affects the readability of the function, it also makes it comparatively less gas efficient.

Recommendation:
The function can be redesigned to avoid code repetition as well as optimize gas usage.

Notes/Important Pointers

1. The owner can deposit any amount from any lender’s wallet.
The newRound() function in the LenderPool contract is used for depositing stablecoins from the user's
wallet to the LenderPool contract. The owner has the right to deposit any amount from a user’s wallet.
The deposit amount is capped by the user’s stablecoin balance or user’s approval limit to the
LenderPool contract, whichever is lesser.

The users of the LenderPool smart contract must not approve more than the amount that they want to
deposit to the LenderPool contract. Also, due to the kind of implementation of the newRound()
function, the Frontend interacting with the LenderPool contract must not ask for an Infinite Amount
approval from its users.

Acknowledged (Dec 20th, 2021): The issue has been acknowledged by the Polytrade Finance team.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

10

Unit Tests

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

11

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

12

Test Coverage Report

Automated Audit Result

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

13

Fuzz Testing
● New Round making - PASS
● setMinimum deposit - PASS
● Invalid Time withdrawAll - PASS
● totalReward - PASS
● validTime withdrawAll - PASS
● transferOwnership - PASS
● renounceOwnership - PASS

Screenshots:

Part 1 Started:

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

14

Part 1 In progress:

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

15

Part 1 Output:

Part 2 Started:

Part 2 In progress:

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

16

Part 2 completed:

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

17

Concluding Remarks
While conducting the audits of the PolyTrade Finance smart contract, it was observed that the contracts
contain High, Medium, and Low severity issues.

Our auditors suggest that High, Medium, and Low severity issues should be resolved by the developers. The
recommendations given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the PolyTrade Finance platform or its product nor this audit is investment advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

18

