
PolyTrade

Lender Pool

Smart Contract Audit Report

July 04, 2022

Introduction 2
About PolyTrade 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level Reference 5

Findings(v1) 6
High Severity Issues 6
Medium Severity Issues 7
Low Severity Issues 8
Recommendation / Informational 11

Findings(v2) 13
High Severity Issues 13
Medium Severity Issues 13
Low Severity Issues 14
Recommendation / Informational 15

Automated Audit Result 21
Slither 21
Functional Testing / Tesnet 25

Concluding Remarks 28

Disclaimer 28

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

2

Introduction

1. About PolyTrade
Polytrade is a decentralized trade finance platform that aims to transform receivables financing. It will
connect buyers, sellers, insurers, and investors for a seamless receivables financing experience and
help users avoid existing market challenges using its platform solutions. Polytrade will provide
real-world borrowers access to low interest and swift financing to free up critical working capital tapped
from crypto lenders.

By onboarding on Polytrade, everybody gains because the platform bridges the gaps in traditional
receivables financing by accessing untapped crypto liquidity. Through Polytrade, we want to boost
business growth where liquidity is not a hindrance.

Visit https://polytrade.finance/ to know more about it.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provides professional services in the blockchain space. The team
has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and have a
great understanding of DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, and dydx.

The team has been able to secure 175+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-ups with a detailed analysis of the system ensuring security
and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The PolyTrade team has provided the following doc for the purpose of audit:

1. https://github.com/polytrade-finance/lender-pool/tree/develop/docs
2. https://polytrade.finance/whitepaper.pdf
3. https://polytrade.finance/one-pager.pdf

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

3

https://polytrade.finance/
http://immunebytes.com/
https://github.com/polytrade-finance/lender-pool/tree/develop/docs
https://polytrade.finance/whitepaper.pdf
https://polytrade.finance/one-pager.pdf

Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any potential
issues like Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable
Shadowing, Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and
others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs and

vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: PolyTrade
● Contracts Name: LenderPool, RedeemPool, Reward, RewardManager, Strategy, Token, Verification
● Languages: Solidity(Smart contract), Typescript (Unit Testing)
● Github commits for initial audit: 9dee55b0de97b6e4cb385f36fc8a14b1668072d1
● Github commits for final audit: 895ddf1527daed28964266fd4d28daecad7266de
● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,

Slither, SmartCheck

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

4

Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart

contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level Reference
Every issue in this report were assigned a severity level from the following:

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some

point in the future.

Issues(v1) High Medium Low

Open - - -

Closed 1 2 6

Issues(v2) High Medium Low

Open - - -

Closed - 2 1

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

5

Findings(v1)

High Severity Issues

1. Absence of adequate access control in the registerUser() function
Line no: 38-47(Contract: RewardManager)

Explanation:
The registerUser() function in the contract lacks the onlyRole(LENDER_POOL) modifier which would
have ensured that this function shall only be accessible by the LenderPool.

Unlike the current structure of the RewardManager contract where every imperative state-changing
function has been assigned an onlyRole() access control, no such modifier was found for the
registerUser() function.

This leads to an undesired scenario where the function shall be accessible by any third-party actor who
can trigger the function.

Recommendation:
If the above-mentioned scenario is not an intentional design, it is recommended to attach relevant
access control to functions and update the functions accordingly.

Since the registerUser() function of RewardManager is being called by the LenderPool, it's a better and
more secure design only to allow LenderPool the right to access this function.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

6

Medium Severity Issues

1. startTime not validated before registering users
Line no: 38-47(RewardManager)

Explanation:
While registering a new user using the registerUser() function, the contract also calls the registerUser()
function of the Reward contract and passes crucial arguments like lender’s address, lender’s balance
and the start time.

However, it was found that no adequate validations are done within the function body to ensure whether
or not the startTime state variable has been initialized yet.

Due to the lack of this validation, the registerUser() function can be triggered even if the startTime state
variable is zero. This leads to a scenario where the zero value for startTime could be passed while
registering a user to the Reward contract(Line 43, 44) and the startTime for a specific lender will be
made zero.

Recommendation:
Since startTime state variable plays a significant role in the reward calculation procedures in the
contract, its recommended to include required input validations to ensure only valid arguments are
passed to functions.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

2. DoS due to Block Gas Limit. Pull over Push Payments could be preferred.
Line no: 187, 200(Contract: LenderPool)

Explanation:
As per the current function design of the claim functions in the LenderPool contract, there is a for loop
iteration over the total value of currManager, and rewards are distributed to the lender for each reward
manager address in the managerList array.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

7

While such function design shall work fine for smaller iterations, as the number of currManager state
variable increases the chances of DoS vector due to the block gas limit increases as well. Since each
block has an upper bound on the amount of gas that can be spent, the transaction will likely fail if it
exceeds that upper bound.

Recommendation:
In order to mitigate the chances of such a scenario the function design for reward distribution could be
improved. An alternate and better way for payments could be the Pull over Push mechanism.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

Low Severity Issues

1. No Events emitted after imperative State Variable modification
Line no -53(Contract: RewardManager)

Explanation:
Functions that update an imperative arithmetic state variable contract should emit an event after the
update.
The registerRewardManager() function in the contract updates a crucial state variable, i.e., startTime
but doesn’t emit any event on its modification.

The absence of event emission for important state variables update also makes it difficult to track them
off-chain as well.

Recommendation:
As per the best practices in smart contract development, an event should be fired after changing crucial
arithmetic state variables.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

8

https://consensys.github.io/smart-contract-best-practices/development-recommendations/general/external-calls/#favor-pull-over-push-for-external-calls
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

2. rewardOf() function provides misleading values in case of failure
Line no: 130-142(Contract: RewardManager)

Explanation:
The rewardOf() function is designed to return the reward value for a specific lender and token.
However, as per the current function design, if the token address passed as an argument doesn’t match
the reward token address of both stable and trade, it returns zero.
This could be misleading as it represents the fact that the total reward for the lender is zero instead of
symbolizing the wrong token address passed as an argument.

Recommendation:
While this function works fine when called via LenderPool contract, it will lead to misleading return
values when called directly from the RewardManager contract. Hence, adequate error messages could
be provided for this function.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

3. Redundant modifier found with _withdrawFromStrategy() function
Line no: 312(Contract: LenderPool)

Explanation:
During the manual code review, it was found that an onlyOwner modifier has been attached with the
_withdrawFromStrategy() private function.

This function is called twice within the Lender pool contract by switchStrategy & fillRedeemPool
function and both of these function already include the onlyOwner modifier.

Recommendation:
In order to avoid redundant use of modifiers and reduce the gas consumption in during function
execution, the onlyOwner modifer from the _withdrawFromStrategy() function can be removed.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

9

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

4. Storage Reads could be avoided to save gas
Line no: 151(Contract: LenderPool)
The withdrawAllDepost() function includes unnecessary storage reads which could be avoided.

In line 151, the deposited balance of the lender is read from storage (mapping) while the local variable
called balance is already storing the same information.

Recommendation:
Unnecessary reading from storage increases the use of gas. The function could be designed to reduce
gas consumption.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

5. Absence of input validations found
Line no: 23, 55(Contract: Reward)

Explanation:
As per the current design of the contract, the setReward function doesn’t validate the newReward
argument being passed to the function.

Although the function has been marked as only accessible by the owner, it allows passing zero values
for the reward as well which could wipe out the rewards for a particular round.

Additionally, it was also found that the constructor doesn’t include zero address validations.

Recommendation:
Input validations should be included in functions to ensure only valid arguments are passed.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

10

6. No Events emitted after imperative State Variable modification
Line no: 101-114, 126-136(Contract: Reward)

Explanation:
Functions that update an imperative arithmetic state variable contract should emit an event after the
update.
The following functions in the contract update state variables but doesn’t emit any event on its
modification:

● deposit()
● withdraw()

The absence of event emission for important state variables update also makes it difficult to track them
off-chain as well.

Recommendation:
As per the best practices in smart contract development, an event should be fired after changing crucial
arithmetic state variables.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

Recommendation / Informational
1. require statements should be used instead of IF-ELSE statements

Line no: 39, 41(Contract: RewardManager)

Explanation:
registerUser() function includes some strict validation in order to execute the function. For instance,

● The previous reward manager contract should not be a zero address
● Lender’s balance should be greater than zero.

These are strict requirements without which the function should never execute. In solidity, it is
considered a better practice to use require statements for such strict validations instead of IF-ELSE
statements.

Recommendation:
Require statements should be preferred.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

11

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

2. require statements should be used instead of IF-ELSE statements
Line no: 40(Contract: Reward)

Explanation:
registerUser() function includes some strict validation in order to execute the function. For instance,

● The lender address being passed as argument must not already be registered..
This is a strict requirement without which the function should never execute. In solidity, it is considered
a better practice to use require statements for such strict validations instead of IF-ELSE statements.

Recommendation:
Require statements should be preferred.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

12

Findings(v2)

High Severity Issues

No issues were found.

Medium Severity Issues

1. Hardcoded address
Contract: Strategy.sol

Description: The address for AAVE is hard coded in the strategy contract.

Line Code/Function

20 IAaveLendingPool public constant AAVE =

IAaveLendingPool(0x8dFf5E27EA6b7AC08EbFdf9eB090F32ee9
a30fcf);

Recommendation:
It is recommended to not use hardcoded address, set it using constructor and is possible add a setter
for the same. Since the third party dependencies can change overtime and also it makes the contract
chain depended.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

2. Edge case in _isUserRegistered
Contract: LenderPool.sol

Description: If there is only one rewardManager then the require check will pass without checking
whether the user is registered with that rewardManager or not. This happens because the check before
the “or” will be true.

Line Code/Function

342 require(
managerList[managerToIndex[address(rewardManager)] - 1] ==

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

13

address(0) ||
(_lender[_user].isRegistered[

managerList[managerToIndex[address(rewardManager)] - 1]
] && _lender[_user].isRegistered[address(rewardManager)])

);

Recommendation:

Code/Function

require(
(managerList[managerToIndex[address(rewardManager)] - 1] == address(0) ||

_lender[_user].isRegistered[
managerList[managerToIndex[address(rewardManager)] - 1]

]
) && _lender[_user].isRegistered[address(rewardManager)]

);

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

Low Severity Issues
1. Missing approval to new treasury

Contract: LenderPool.sol

Description: The method switchTreasury removes all approval from old treasury but doesnt grant any
to the new treasury.

Line Code/Function

11 function switchTreasury(address newTreasury) external

Recommendation:
Grant same amount of approval to the new treasury as well.

Acknowledged (July 04th, 2022): The issue has been acknowledged by the team in commit
895ddf1527daed28964266fd4d28daecad7266de.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

14

Recommendation / Informational
1. Unused Variables

Contract: RedeemPool.sol

Description:
These contract defines the given state variables but never uses it.

Line Code/Function

19 mapping(address => bool) public lenderPool;

Recommendation:
Remove unused variables

2. Unused Imports
Contract: LenderPool.sol

Description:
The contract contains imports that are not used within the contract and make the contract heavy.

Line Code/Function

5 import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

Recommendation:
Remove unused imports

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

3. Redundant mappings
Contract: LenderPool.sol, Reward.sol, RewardManager.sol

Description: The following mapping state variable is defined and maintained in three contracts
increasing the chances of inconsistencies and increasing operational gas costs.

mapping(address => Lender) private _lender;

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

15

Recommendation:
Rethink logic to keep state information at a single point of truth

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

4. Redundant require check
Contract: ReedemPool.sol

Description: the following require checks are also present within the burn and mint functions making
these require checks redundant

Line Code/Function

68 require(
tStable.balanceOf(msg.sender) >= amount,
"Insufficient balance"

);
require(

tStable.allowance(msg.sender, address(this)) >= amount,
"Insufficient allowance"

);

Recommendation:
Remove unnecessary checks to save on gas consumption.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

5. Redundancy in switchStrategy
Contract: LenderPool.sol

Description: switchStrategy sets strategy address twice if oldStrategy is not zero.

Line Code/Function

55 function switchStrategy(address newStrategy) external

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

16

Recommendation:
Remove redundant assignment to save on gas consumption.

6. Refactor _isUserRegistered
Contract: LenderPool.sol

Description:
The method does nothing if the rewardManager is zero address, which is clear on the first line and yet it
is checked again in the if condition.

Line Code/Function

341 function _isUserRegistered(address _user) private

Recommendation:
Refactor the method to optimize gas usage and avoid redundant checks

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

7. Refactor methods
Contract: LenderPool.sol

Description:
withdrawDeposit and withdrawAllDeposit share common lines of code which increases the contract
size.

Recommendation:
withdrawDeposit and withdrawAllDeposit can be refactored to call a common internal function. Similar
can be done for redeem and redeemAll.

8. Pragma Unlocked
Contract: All Contracts

Description:
Every Solidity file specifies in the header a version number of the format. The caret symbol before the
version number implies an unlocked pragma, meaning that the compiler will use the specified version
and above. This range of versions might cause some unexpected version-related issues.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

17

Recommendation:
Fix the solidity version by removing the caret symbol from the specified version numbers.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

9. Missing events in setValidation
Contract: Verification.sol

Description:
The method setValidation doesn't emit any event.

Recommendation:
Create and emit events for every setter.

Status: Open

10. Incorrect event name in netspec comment
Contract: Verification.sol

Description:
The netspec comment before updateValidationLimit states that it emits an event called
NewValidationLimit but it emits ValidationLimitUpdated instead

Recommendation:
Update the comment

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

11. Contract name in revert messages

Recommendation:
It is recommended to have all require error messages be preceded with the contract name for better
understanding and debugging of reasons

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

18

12. Missing validation
Contract: RewardManager.sol

Description:
Some of the best practices are not followed throughout the repo, and some simple recommendations
can be implemented.

Line Code/Function

119 function claimRewardFor(address lender, address token)

Recommendation:
Add an input validation checking validity of the address passed.

Amended (July 04th, 2022): The issue has been fixed by the team and is no longer present in commit
895ddf1527daed28964266fd4d28daecad7266de.

13. Hardcoded values
Contract: Reward.sol, Token.sol

Description:
Hardcoded values are used to initialize an year variable and to mint tokens in the tokens contract

Line Code/Function

Token - 23 _mint(msg.sender, 1_000_000_000 * (10**decimals_));

Reward - 279 uint oneYear = (10000 * 365 days);

Recommendation:
It is recommended to pass hardcoded values as a parameter and make standard values as constants.
Make a constant for oneYear variable in Reward.sol and for Token.sol pass the mint amount as a
constructor parameter.

Status: Partially corrected

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

19

14. Misleading variable name
Contract: Reward.sol

Description:
Reward contract defines pauseReward to reset reward but the name suggests it pauses contract for
use

Recommendation:
It is better to name the method in accordance with what it is performing to avoid confusion.

Status: Partially corrected
Remark: Comment not updates

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

20

Automated Audit Result

Slither

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

21

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

22

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

23

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

24

Functional Testing / Tesnet

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

25

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

26

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

27

Concluding Remarks
While conducting the audits of the PolyTrade Finance smart contract, it was observed that the contracts
contain High, Medium, and Low severity issues.

Our auditors suggest that High, Medium and Low severity issues should be resolved by the developers. The
recommendations given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the PolyTrade Finance platform or its product nor this audit is investment advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommen
ded.

28

