
PolyTrade

Client Portal

Smart Contract Audit Report

January 12, 2021

Introduction 3
About PolyTrade 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level References 5
High Severity Issues 6
Medium Severity Issues 6
Low Severity Issues 6

Recommendation / Informational 8

Unit Tests 9

Test Coverage Report 10

Automated Audit Result 10
Solhint Linting Violations 10
Contract Library 10
Slither 11

Fuzz Testing 12

Concluding Remarks 13

Disclaimer 13

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

2

Introduction

1. About PolyTrade
Polytrade is a decentralized trade finance platform that aims to transform receivables financing. It will
connect buyers, sellers, insurers, and investors for a seamless receivables financing experience and
help users avoid existing market challenges using its platform solutions. Polytrade will provide
real-world borrowers access to low interest and swift financing to free up critical working capital tapped
from crypto lenders.

By onboarding on Polytrade, everybody gains because the platform bridges the gaps in traditional
receivables financing by accessing untapped crypto liquidity. Through Polytrade, we want to boost
business growth where liquidity is not a hindrance.

Visit https://polytrade.finance/ to know more about.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain space. The team
has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and have a
great understanding of DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 105+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-up with a detailed analysis of the system ensuring security
and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The PolyTrade team has provided the following doc for the purpose of audit:

1. https://github.com/polytrade-finance/lender-portal-contracts/tree/dev/docs
2. https://polytrade.finance/whitepaper.pdf
3. https://polytrade.finance/one-pager.pdf

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

3

https://polytrade.finance/
http://immunebytes.com/
https://github.com/polytrade-finance/lender-portal-contracts/tree/dev/docs
https://polytrade.finance/whitepaper.pdf
https://polytrade.finance/one-pager.pdf

Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any potential
issues like Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable
Shadowing, Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and
others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs and

vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: PolyTrade
● Contracts Name: Token.sol, PricingTable.sol, Offer.sol, PriceFeeds.sol
● Languages: Solidity(Smart contract), Typescript (Unit Testing)
● Github commits for initial audit: da168eb601cca2851ed56f213e742cd6e46c6bbc
● Github commits for final audit: 8d399f242aca69dd12048e61a1f15bd44a520068
● Testnet deployment:

○ Token: 0x8f256e58d0309Fcfb75506E4EE2beD32bcf997f9
○ PriceFeeds: 0x4E87257F423F10603EE150E3A1d9918988d4df4F
○ PricingTable: 0xc260793891953Cd3D4c7E60bB1f2Dc6a6587bde6
○ Offers: 0x04E16934A5B6c7eE82cE187AB56a22b81bd47Cb4

● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,
Slither, SmartCheck

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

4

https://github.com/polytrade-finance/client-portal-contracts/tree/da168eb601cca2851ed56f213e742cd6e46c6bbc
https://github.com/polytrade-finance/client-portal-contracts/tree/8d399f242aca69dd12048e61a1f15bd44a520068
https://rinkeby.etherscan.io/address/0x8f256e58d0309Fcfb75506E4EE2beD32bcf997f9
https://rinkeby.etherscan.io/address/0x4E87257F423F10603EE150E3A1d9918988d4df4F
https://rinkeby.etherscan.io/address/0xc260793891953Cd3D4c7E60bB1f2Dc6a6587bde6
https://rinkeby.etherscan.io/address/0x04E16934A5B6c7eE82cE187AB56a22b81bd47Cb4

Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart

contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include:
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References
Every issue in this report was assigned a severity level from the following:

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some

point in the future.

Issues High Medium Low

Open - - -

Closed - - 4

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

5

High Severity Issues

No issues were found.

Medium Severity Issues

No issues were found.

Low Severity Issues

1. The contract should verify the validity of Chainlink’s oracle data.
The getPrice() function of PriceFeeds contract calls the latestRoundData() function of
AggregatorV3Interface contract to fetch an asset’s price. However, it does not check the validity and
freshness of the chainlink oracle’s price.
If there is a problem with chainlink starting a new round and finding consensus on the new value for the
oracle (e.g. chainlink nodes abandon the oracle, chain congestion, vulnerability/attacks on the chainlink
system) the PriceFeeds contract may continue using outdated stale data (if oracles are unable to
submit no new round is started).

Recommendation:
Consider performing validation checks on the returned data of
AggregatorV3Interface.latestRoundData() function.

Amended (Jan 12th, 2022): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

2. Null address checks are not present at multiple places.
The setStableAggregator() function of PriceFeeds contract and setPricingTableAddress(),
setPriceFeedAddress() function of Offer smart contract accept any address value for updating the
respective contract states. But these functions do not perform validation check null address value
(0x000…). Smart contracts must explicitly verify all the input variables for their functions.

Recommendation:
Consider adding a validation check for zero address in the above-mentioned functions.

Amended (Jan 12th, 2022): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

6

3. _checkParams() function is missing validity check for pricingId.
The _checkParams() function in Offer smart contract is used to validate multiple input variables of
createOffer() function. However, it misses the validity check for the pricingId variable. Since the
function is intended to be used as a sanity check function it should explicitly verify and validate every
input parameter.

Recommendation:
Consider validating the pricingId parameter using the IPricingTable.isPricingItemValid() function.

Amended (Jan 12th, 2022): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

4. The createOffer() function accepts any address as the stableAddress variable.
In the createOffer() (and reserveRefund()) function of Offer smart contract can accept any ethereum
address as the OfferItem.OfferParams.stableAddress variable. These functions also make external
calls to these smart contracts. Making external calls to untrusted contracts can be risky and should be
done cautiously.

Recommendation:
Consider implementing a whitelist for acceptable stableAddress values or any other form of validation
mechanism for stableAddress variables.

Amended (Jan 12th, 2022): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

7

Recommendation / Informational
1. activateOracle() and deactivateOracle() functions can be combined together.

The activateOracle() and deactivateOracle() functions of Offer smart contract can be combined
together to reduce the contract size.
Like this:

/**

* @dev Emitted when Oracle usage is toggled

*/

event ToggledOracle(bool state);

/**

* @dev Toggle usage of the Oracle

*/

function toggleOracleSwitch() external onlyOwner {

toggleOracle = !toggleOracle;

emit ToggledOracle(toggleOracle);

}

Amended (Jan 12th, 2022): The issue has been fixed by the Polytrade Finance team and is no longer
present in the smart contract.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

8

Unit Tests

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

9

Test Coverage Report

Automated Audit Result

Solhint Linting Violations
Solhint is an open-source project for linting solidity code, providing both security and style guide validations. It
integrates seamlessly into most mainstream IDEs. We used Solhint as a plugin within our VScode for this
analysis. No Linting violations were detected by Solhint.

Contract Library
Contract-library contains the most complete, high-level decompiled representation of all Ethereum smart
contracts, with security analysis applied to them in real-time. We performed analysis using contract Library on
the Kovan address of the SporeToken, SporeStake and LiquidityFarming contracts used during manual testing:

● Token: 0x8f256e58d0309Fcfb75506E4EE2beD32bcf997f9
● PriceFeeds: 0x4E87257F423F10603EE150E3A1d9918988d4df4F
● PricingTable: 0xc260793891953Cd3D4c7E60bB1f2Dc6a6587bde6
● Offers: 0x04E16934A5B6c7eE82cE187AB56a22b81bd47Cb4

It raises no major concern for the contracts.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

10

https://contract-library.com/contracts/Rinkeby/0x8f256e58d0309Fcfb75506E4EE2beD32bcf997f9
https://contract-library.com/contracts/Rinkeby/0x4E87257F423F10603EE150E3A1d9918988d4df4F
https://contract-library.com/contracts/Rinkeby/0xc260793891953Cd3D4c7E60bB1f2Dc6a6587bde6
https://contract-library.com/contracts/Rinkeby/0x04E16934A5B6c7eE82cE187AB56a22b81bd47Cb4

Slither
Slither, an open-source static analysis framework. This tool provides rich information about Ethereum smart
contracts and has critical properties. While Slither is built as a security-oriented
static analysis framework, it is also used to enhance the user’s understanding of smart contracts, assist in code
reviews, and detect missing optimizations.

The concerns slither raises have already been covered in the manual audit section.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

11

Fuzz Testing

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

12

Concluding Remarks
While conducting the audits of the PolyTrade Finance smart contract, it was observed that the contracts
contain only Low severity issues.

Our auditors suggest that Low severity issues should be resolved by the developers. The recommendations
given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the PolyTrade Finance platform or its product nor this audit is investment advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

13

